You are here
Vision-Based Navigation for Formation Flight onboard ISS
Title: Principal Investigator
Phone: (321) 298-5751
Email: hgutier@fit.edu
Title: President and CEO
Phone: (321) 505-4560
Email: jchandira@gmail.com
Contact: Hector Gutierrez
Address:
Phone: (321) 298-5751
Type: Domestic Nonprofit Research Organization
The RINGS project (Resonant Inductive Near-field Generation Systems) was a DARPA-funded effort to demonstrate Electromagnetic Formation Flight and wireless power transfer in microgravity. Integration inconsistencies in both hardware and software prevented the experiment from achieving its objectives during the planned test sessions. A later project supported by NASA ARC focused on the assessment, diagnostics, corrections and ground testing of RINGS, to understand the reasons for the failure of RINGS to complete its science sessions, and assess the possibility of correcting these errors in future missions. The assessment concluded that RINGS can be successfully used in future science sessions provided that a new metrology system is available to navigate RINGS in real time onboard ISS. The proposed study supports the implementation, integration and ground testing of vision-based navigation of RINGS, using the Smartphone Video Guidance Sensor (SVGS) with SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellite). SVGS was developed at NASA MSFC for application on cubesats and small satellites to enable autonomous rendezvous and capture, and formation flying. SPHERES are free-flying robots that have been used for numerous experiments on board ISS. Their metrology system is based on ultrasonic beacons, and does not operate correctly with large flyers due to multi-path signal reflections. The main objective of this study is the integration of SVGS (as vision-based position and attitude sensor) with the SPHERES GN&C environment. Successful integration will be demonstrated by 3DOF vision-based guidance, navigation and motion control experiments on a flat floor using the RINGS ground units available at Florida Tech. Performance assessment will be done by a vision-based metrology system based on data fusion using high resolution cameras. A path forward for deployment on ISS will be developed in coordination with NASA ARC.
* Information listed above is at the time of submission. *