You are here

STTR Phase I: Development of a Process to Extend the Shelf Life of Fruits and Vegetables at Ambient Temperature

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1819600
Agency Tracking Number: 1819600
Amount: $224,387.00
Phase: Phase I
Program: STTR
Solicitation Topic Code: CT
Solicitation Number: N/A
Timeline
Solicitation Year: 2017
Award Year: 2018
Award Start Date (Proposal Award Date): 2018-07-01
Award End Date (Contract End Date): 2019-03-31
Small Business Information
409 College Avenue
Ithaca, NY 14850
United States
DUNS: 080816009
HUBZone Owned: Yes
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Vipul Saran
 (508) 340-0777
 vipul@fartherfarms.com
Business Contact
 Vipul Saran
Phone: (508) 340-0777
Email: vipul@fartherfarms.com
Research Institution
 Cornell University
 Vipul Saran
 
M10G Stocking Hall
Ithica, NY 14853
United States

 Nonprofit College or University
Abstract

The broader impact/commercial potential of this STTR Phase I project is a sustainable fruit and vegetable processing technology utilizing a new, low temperature technique that can extend the shelf life of pre-cut fruits and vegetables by months without using preservatives, chemicals, freezing, or refrigeration. The technology would enable: all-natural, shelf stable fruit and vegetable products that retain maximum nutritional value, texture, and taste. With significant percentages of the total US national energy budget used for food-related energy, and high fresh produce loss in the developed countries due to insufficient refrigeration, achieving shelf life extension without cold storage or preservatives could drastically reduce energy costs, increase efficiency, and expand access to nutrition globally. This STTR Phase I project proposes to develop, validate, and build-upon initial research to evaluate the feasibility and scope of a novel food processing technology. Traditional processing methodologies have fundamental drawbacks. High temperature treatments degrade nutritional quality while altering texture and taste of end-products. Freezing negatively affects the reconstitution properties of fruits and vegetables, and requires high energy consumption throughout the food system to maintain the cold chain. HPP (high pressure processing) has limitations on the enzymes it can inactivate, and chemical alterations from high pressure treatment negatively affects texture and taste. This research proposal will use validation studies to evaluate the feasibility and applicability of the novel processing technique to a variety of fruits and vegetables. Successful experimentation will prove that the application of dense phase gas at low temperatures can overcome the aforementioned drawbacks, achieving enzymatic inactivation, destruction of the spores, improved reconstitution properties, lower energy requirements, and minimal deterioration of taste, texture, and nutritional quality. Such a result would actuate follow-on development work to validate that, at commercial scale, the new process technology improves upon the operational costs of traditional methodologies. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government