You are here
Development of a breeding system in Chlamydomonas moewusii for improved production strains
Phone: (858) 822-7743
Email: smayfield@ucsd.edu
Phone: (760) 822-8277
Email: jessetraller@globalgae.com
Contact: Stephen Mayfield
Address:
Phone: (858) 822-7743
Type: Nonprofit College or University
For economically viable large-scale production of microalgae based food and biofuel to become a reality, significant improvements in algal productivity need to be achieved. With current regulatory guidelines, large scale outdoor cultivation of microalgae for these products restricts the use of transgenic algal strains, which in the laboratory, have thus far been the primary strategy taken to effectively increase lipid and growth productivity. Traditional breeding methods would enable development of non-GMO improved algal strains. Though highly successful for increasing crop yields in terrestrial plants, breeding strategies to improve overall productivity have been under-studied in microalgae production. This project will build off of the laboratory based methods developed to breed green algae, and will develop new strains within the Chlamydomonas genus that possess improved carbonate salt and pH tolerance – two key traits required for fast, robust growth outdoors. The genetic and phenotypic diversity within the Chlamydomonas genus combined with the well-developed protocols to induce and control the sexual cycle allow for the opportunity to create elite, high yielding production quality strains, without the use of genetic engineering. In Phase I, several different isolates of Chlamydomonas containing desired phenotypic traits, such has high pH and high salt tolerance, will be bred and tested for improved growth under outdoor growth conditions. Species within the Chlamydomonas genus have long been used to conduct interspecific crossings in order to answer basic scientific questions, but there has been little application of this classic technology toward improving and developing outdoor production strains. Due to the significant work already conducted in Chlamydomonas genetics, this project is low-risk with high reward, and seeks to reframe the research to be focused on optimization for outdoor production. Phase II work will be focused on developing new traits to further boost productivity, such as higher innate lipid content and resistance to predation, and taking these strains outdoors at a large-scale production facility to demonstrate this increased productivity. This methodology, which uses traditional breeding to develop robust production strains, will ultimately boost aerial productivity in outdoor algal systems, further increasing the feasibility of this industry to provide commercial scale alternative food and fuel sources to the United States.
* Information listed above is at the time of submission. *