You are here

Life Support and Habitation Systems


"The Life Support and Habitation Systems Focus Area seeks key capabilities and technology needs encompassing a diverse set of engineering and scientific disciplines, all which provide technology solutions that enable extended human presence away from Earth, in deep space and on planetary surfaces, such as Moon and Mars.The focus is on those mission systems and elements that directly support astronaut crews, such as Environmental Control and Life Support Systems (ECLSS), Extravehicular Activity (EVA) Systems and Radiation Protection, as well as systems engineering approaches that enable vehicle and system integration.Environmental Control and Life Support Systems encompass process technologies, equipment and monitoring functions necessary to provide and maintain a livable environment within the pressurized cabin of crewed spacecraft, including environmental monitoring, water recycling, waste management and resource recovery. For future crewed missions beyond low-Earth orbit (LEO) and into the solar system, regular resupply of consumables and emergency or quick-return options will not be feasible. Technologies are of interest that enable long-duration, safe and sustainable deep-space human exploration. Special emphasis is placed on developing technologies that will fill existing gaps, reduce requirements for consumables and other resources, including mass, power, volume and crew time, and which will increase safety and reliability with respect to the state-of-the-art. Because spacecraft may not be tended by crew for long periods, systems must be operable after long periods of dormancy or absence of crew.As we consider human missions beyond earth, new technologies must be compatible with attributes of the environments we encounter, including partial gravity, atmospheric pressure and composition, space radiation, and presence of planetary dust.Portable Life Support System (PLSS) components that require space vacuum, may not operate in the weak carbon dioxide atmosphere on Mars. For astronauts to walk once again on a distant planetary surface, an effective boot must be incorporated into the design of the exploration space suit’s pressure garment. Outside of the protection of the Earth’s magnetosphere, radiation in deep space will be a challenge.Electronic systems, including processors for high performance computing and power converters, for avionics within spacecraft cabins and space suits, will need to be radiation hardened or otherwise tolerant to the radiation environment.There is a wealth of commercial off-the-shelf (COTS) hardware that could potentially be used, but only if tested for tolerance to these environments.The current collaborative environment between government, commercial and international sectors will result in the distributed development of human spacecraft elements and systems for human missions of the future, such as Gateway. Their integration may benefit from advances in model based systems engineering approaches.Please refer to the description and references of each subtopic for further detail to guide development of proposals."
US Flag An Official Website of the United States Government