You are here

Fingerprinting Cancer via Multiparameter Extracellular Vesicle Analysis

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R41CA265607-01
Agency Tracking Number: R41CA265607
Amount: $400,000.00
Phase: Phase I
Program: STTR
Solicitation Topic Code: 102
Solicitation Number: PA20-265
Timeline
Solicitation Year: 2020
Award Year: 2021
Award Start Date (Proposal Award Date): 2021-07-01
Award End Date (Contract End Date): 2022-06-30
Small Business Information
5754 PACIFIC CTR BLVD STE 204
San Diego, CA 92121-4206
United States
DUNS: 129852864
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 SEAN GERMAN
 (801) 582-0492
 sgerman@electronicbio.com
Business Contact
 TRACEY WRIGHTSON
Phone: (858) 412-1800
Email: twrightson@electronicbio.com
Research Institution
 UNIVERSITY OF UTAH
 
75 SOUTH 2000 EAST
SALT LAKE CITY, UT 84112-8930
United States

 Nonprofit College or University
Abstract

Project Summary
Electronic BioSciences (EBS) proposes, in collaboration with Distinguished Professor Henry White at the
University of Utah, to develop a nanopore-based extracellular vesicle (EV) characterization system capable of
high-resolution, single-vesicle, solution-based characterization, sorting, and isolation. EVs are nanometer-scale,
cell-derived vesicles that are produced by nearly all mammalian cells under normal physiological conditions and
with increased production rates for various disease states (e.g. cancers, neurological diseases, psychiatric
disorders, etc.). EVs can be found in most biological fluids and contain proteins, nucleic acids, and lipid molecules
that are distinctly dissimilar to the parent cell’s cytoplasmic contents, indicating that exosome loading is not a
diffusive or unregulated process. Furthermore, EVs facilitate intercellular communication by transferring these
contents into recipient cells to alter the target cells’ phenotype and function. Thus, in addition to their general
physiological roles, EVs have important implications in disease pathogenesis, and significant potential as
therapeutic targets and drug carriers. Consequently, this has spurred a great deal of interest in new methods to
not only characterize the physical properties of EVs (size, zeta potential, surface markers, nucleic acid cargo,
and concentration), but increased interest in developing new techniques that have the ability to efficiently and
accurately sort/isolate EVs such that the contents/cargo can be profiled in a subpopulation-specific manner.
Advances in the areas of EV characterization and sorting/isolation would greatly assist the efforts to understand
the general role of EVs in human health, and also benefit efforts aimed at utilizing EVs in molecular diagnostics,
biomarker identification, and targeted therapies for cancer. The EV characterization and sorting system that EBS
and Professor Henry White will be developing during this program will specifically enable single-particle
assessments of an EV sample’s true distribution of size, zeta potential, density of fluorescently tagged surface
markers, and nucleic acid cargo, along with the ability to isolate/collect specific EV subpopulations with tightly
defined biophysical parameters, all on a single platform. The feasibility of the proposed system will be
demonstrated by building a prototype platform and showing its ability to characterize, sort and isolate EV
samples. The resulting system will have an ease-of-use, throughput, and price point similar to flow cytometry,
dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), or single-pass resistive-pulse techniques,
with a resolution comparable to microscopy techniques, e.g. scanning or tunneling electron microscopy (SEM or
TEM, respectively) or atomic force microscopy (AFM), yielding a state-of-the-art instrument which will directly
enable and advance the field of EV diagnostics.Project Narrative
Extracellular vesicles (a subset called exosomes in particular) are emerging as powerful agents in altering cell
phenotypes, especially in tumorigenesis and cancer progression, via their protein, lipid, and nucleic acid cargo.
They are widely distributed and rich in biomarkers making them ideal targets for “liquid biopsy” diagnostics, but
their small size and heterogeneity places them at the limits of current characterization and sorting technologies.
In response to this urgent need, EBS proposes to develop a nanopore-based, high-resolution extracellular
vesicle characterization system capable of isolating subpopulations of extracellular vesicles based upon multiple
biophysical properties simultaneously to enable cancer diagnostics and monitoring.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government