You are here


Award Information
Agency: Department of Energy
Branch: N/A
Contract: DE-AR0001673
Agency Tracking Number: 1954-1971
Amount: $259,613.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: N/A
Solicitation Number: N/A
Solicitation Year: 2022
Award Year: 2023
Award Start Date (Proposal Award Date): 2022-08-05
Award End Date (Contract End Date): 2024-08-04
Small Business Information
4201 N 27th St Fl 2
Milwaukee, WI 53216
United States
DUNS: 080663256
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: Unavailable
Principal Investigator
 Chad Mason
 (630) 310-1045
Business Contact
 Chad Mason
Phone: (630) 310-1045
Research Institution

Advanced Ionics, Inc. (AI)—proposes to advance its breakthrough, high-efficiency low-cost hydrogen electrolyzer technology to gigawatt-scale production within the next decade, supporting rapid decarbonization of heavy industry 10 to 20 years earlier than possible under typical industry-led R&D timeframes. Targeting the multi-billion-dollar hydrogen industry,1 AI’s system will generate volumes needed by refining, ammonia production, chemicals production, steel, glass, methanol, and other high-consumption industries that currently rely on steam methane reforming (SMR) for hydrogen production. When fully commercial, AI’s system will enable and catalyze decarbonization in these hard-to-abate sectors, potentially saving gigatons of GHG emissions over the next decade, and provide a viable path to meet aggressive emissions reduction targets. Our efficiency advantages will also save many terawatt-hours of precious renewable electricity, as the most ideal locations for solar wind projects are used-up. Most expert analyses completed to date conclude that electrolyzer-based hydrogen production will require massive, time-consuming, and difficult-to-achieve scaling to reach US and global industrial decarbonization goals. Yet electrolyzers continue to suffer from low efficiencies and high capital cost, causing the price of hydrogen from electrolysis to be many times that of conventional SMR. These inefficiencies are inherent to the thermodynamics of the electrolysis of liquid water, and cannot be avoided. To address these issues, AI is developing a new generation of steam-utilizing, intermediate-temperature electrolyzers that leverage process or waste heat to create affordable, clean hydrogen—specifically for heavy industry. Unlike incumbent stand-alone electrolyzer technologies, (alkaline, proton exchange membrane, alkaline exchange membrane, and solid oxide), AI’s technology will integrate with existing industrial processes and utilize abundant, low-grade process and waste heat (150+ °C) inherent to our targeted industries. As a result, our systems will circumvent the existing floor on electricity consumption for electrolytic hydrogen, achieving price points that are thermodynamically impossible for competing technologies.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government