You are here

SBIR Phase I:Liquid-Enabled Advanced Pitch (LEAP) Semiconductor Manufacturing

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 2304119
Agency Tracking Number: 2304119
Amount: $275,000.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: S
Solicitation Number: NSF 22-551
Solicitation Year: 2022
Award Year: 2023
Award Start Date (Proposal Award Date): 2023-07-15
Award End Date (Contract End Date): 2024-06-30
Small Business Information
2210 Technology Drive
Schenectady, NY 12308
United States
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Phil Hustad
 (713) 504-6883
Business Contact
 Phil Hustad
Phone: (713) 504-6883
Research Institution

The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase I project is the development of materials and processes for semiconductor manufacturing that will enable the progression of Moore’s Law and help to strengthen domestic semiconductor manufacturing capacity and capability. Recent supply chain issues have plagued the semiconductor industry, and this has had ripple effects throughout the American economy. The majority of advanced semiconductor manufacturing capacity is outside of the U.S. and this recent shortage has highlighted the need for domestic foundries both for economic vitality in the U.S. as well as national security and supply chain resiliency. In 2019, American semiconductor foundries directly employed 184,600 workers, down from 292,100 (-37%) in 2001. The main loss of manufacturing jobs was attributed to the utilization of offshore foundries.Currently, U.S. semiconductor manufacturing represents just 1% of global capacity and 80% of U.S. semiconductor manufacturing capacity is in the 200 mm (8-inch) format, which is not compatible with the most advanced, high-performance processes, limiting production to greater than65 nm nodes. This project will increase the competitiveness of currently established U.S.-based foundries as well as increase the performance of foundries that are under construction. _x000D_
This project seeks to develop and validate the performance of several required materials to enable the integration of a novel semiconductor manufacturing process that has the capability to double the density of features in current cutting-edge semiconductor chip manufacturing processes.This solution may also simplify the overall manufacturing process, without the need for intensive capital expenditures. At the conclusion of this project, the performance of the developed materials and the resulting manufacturing improvement will be demonstrated on both 8-inch and 12-inch formats. The process begins with conventional photolithography on a chemically amplified resist to define a relief pattern. A Trencher material is then coated on top of and diffused into the pattern, creating a self-aligned layer of polarity-switched material at the sidewalls of the resist. A Masker is then applied to fill the openings in the pattern, and the final pitch-doubled pattern is revealed. The diffusion-controlled process achieves a similar result to alternative processes without the need for expensive tool upgrades.The technology can extend canonical lithography methods by up to 2 nodes, reduce production costs by more than 80%, and reduce patterning errors to improve yield. Importantly, the process is applicable to 8-inch wafers, bringing advanced node dimensionality to older fabs._x000D_
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government