You are here

SBIR Phase I:Novel development of a pediatric Magnetic Resonance Imaging (MRI) scanner

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 2323231
Agency Tracking Number: 2323231
Amount: $275,000.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: IH
Solicitation Number: NSF 23-515
Timeline
Solicitation Year: 2023
Award Year: 2023
Award Start Date (Proposal Award Date): 2023-10-01
Award End Date (Contract End Date): 2024-09-30
Small Business Information
1159 Gibbs Ave
Saint Paul, MN 55108
United States
DUNS: N/A
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: Yes
Principal Investigator
 Efrain Torres
 (773) 600-8453
 efrain@adialante.com
Business Contact
 Efrain Torres
Phone: (773) 600-8453
Email: efrain@adialante.com
Research Institution
N/A
Abstract

This Small Business Innovation Research (SBIR) Phase I project focuses on the development of techniques that will facilitate the design and development of affordable, compact, and patient-friendly magnetic resonance imaging (MRI) systems. MRI systems are the preferred modality for a range of imaging types, notably pediatrics, due to their superior diagnostic capabilities, high resolution, and minimal side effects. However, traditional MRI experiences can be daunting for children due to the confined and noisy environment, often leading to alternatives such as the use of anesthesia for an MRI scan or the use of computerized tomography (CT), which exposes them to high levels of ionizing radiation. The objective of this project is to innovate novel techniques for developing a new generation of scanners, with a focus on creating child-friendly imaging experiences. These groundbreaking techniques have the potential to introduce new classes of MRI scanners, expand the imaging market, and democratize MRI systems to communities in need worldwide._x000D_
_x000D_
The intellectual merit of this project focuses on the development of B1 imaging approaches. While traditional MRI scanners rely on B0 gradient coils for spatial encoding, B1 coils have previously been shown to spatially encode, but they remain widely under-used and under-developed. The goal of this effort is to demonstrate the viability and expand upon the B1 imaging approach known as Frequency-modulated Rabi-Encoded Echoes (aka, FREE), specifically, frequency-encoded and phase-encoded FREE. FREE is unique from other B1 imaging approaches because of its high immunity to magnetic imperfections. FREE, unlike other approaches, can appropriately image in highly inhomogeneous (and inexpensive) magnets. A scanner built around FREE would take advantage of the cost savings that come with removing B0 gradient coils and from reducing the homogeneity of a magnet. An MRI scanner utilizing FREE would be more affordable, compact, and silent. This project will focus on demonstrating two- and three-dimensional imaging on a compact, affordable, and inhomogeneous 0.5 Tesla system, thereby demonstrating the capability of B1 imaging approaches._x000D_
_x000D_
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government