You are here

Fluorescence lifetime imaging device for 5-ALA-guided neurosurgery

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R41CA281543-01
Agency Tracking Number: R41CA281543
Amount: $239,040.00
Phase: Phase I
Program: STTR
Solicitation Topic Code: 394
Solicitation Number: PA22-178
Timeline
Solicitation Year: 2022
Award Year: 2023
Award Start Date (Proposal Award Date): 2023-06-01
Award End Date (Contract End Date): 2024-05-31
Small Business Information
1410 PINE LANE
Davis, CA 95616-1734
United States
DUNS: N/A
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 JULIEN BEC
 (530) 400-8787
 bec.julien@gmail.com
Business Contact
 JULIEN BEC
Phone: (530) 400-8787
Email: bec.julien@gmail.com
Research Institution
 UNIVERSITY OF CALIFORNIA AT DAVIS
 
OFFICE OF RESEARCH - SPONSORED PROGRAMS 1850 Research Park Drive, Suite 300
DAVIS, CA 95618-6153
United States

 Nonprofit College or University
Abstract

PROJECT SUMMARY
5-ALA-induced PpIX fluorescence-guided surgery (FGS) enables real-time visualization of residual cancer tissue
during resection of brain tumors. This addresses a critical need in surgical oncology as the ability to identify
residual tumor leads to improvements in overall survival, whereas the sparing of normal tissue benefits the
patient’s quality of life. Currently, surgeons visually appreciate the PpIX fluorescence intensity under low-light
conditions using modified microscopes. This approach is qualitative as the perception of PpIX fluorescence
intensity is influenced by many factors including: 1) the type of light source used for illumination, 2) the
microscope’s working distance, 3) the presence of endogenous absorbers such as blood, and 4) non-uniform
illumination of the surgical field which is especially critical as residual tumor present on the sides of the surgical
cavity may be missed due to insufficient fluorescence excitation. Additionally, operation under low-light
conditions disrupts the surgical workflow.Our research group at UC Davis has developed a fluorescence lifetime (FLIm) based FGS approach that is
highly sensitive, quantitative, and insensitive to room light, addressing the challenges of the existing 5-ALA FGS
instrumentation. The performances of this system were evaluated in a recent pilot study demonstrating 5-ALA-
induced PpIX fluorescence detection in human high- and low-grade glioma patients in vivo (patients during
surgery).Building on these results, HiLight Surgical was established by team members from UC Davis with the mission
to support surgeons by developing and commercializing easy-to-use imaging systems that provide accurate,
quantitative information about fluorophore accumulation, at a price point suitable for broad adoption by the
surgical oncology community. We plan to develop and validate a low-cost, high performance FLIm FGS system
in this phase I proposal by:SA1: Implementing FLIm data acquisition and processing using a low-cost high-speed analog-to-
digital converter (ADC) and an FPGA. This will enable a ~4-fold cost reduction of the system as well as reduce
its footprint.SA2: Characterize the performance of this alternative data acquisition and processing
implementation compared to the reference research-grade instrumentation.At the conclusion of this work, we will have determined whether the performance achieved with this
alternative low-cost data acquisition and processing is suitable to proceed with the development of a commercial
FLIm device well-tailored for the requirements of 5-ALA fluorescence-guided surgery.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government