You are here

Reagents for Preparing Structure-Free DNA and RNA

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R42GM074564-01
Agency Tracking Number: GM074564
Amount: $99,871.00
Phase: Phase I
Program: STTR
Solicitation Topic Code: N/A
Solicitation Number: N/A
Timeline
Solicitation Year: N/A
Award Year: 2005
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
Trilink Biotechnologies, Inc. 9955 Mesa Rim Rd
San Diego, CA 92121
United States
DUNS: N/A
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 HOWARD GAMPER
 (215) 746-0181
 HBGAMPER@MAIL.MED.UPENN.EDU
Business Contact
 RICHARD HOGREFE
Phone: (858) 546-0004
Email: RHOGREFE@TRILINKBIOTECH.COM
Research Institution
 THOMAS JEFFERSON UNIVERSITY
 
201 South 11th Street Office of Research Administration
PHILADELPHIA, PA 19107
United States

 Nonprofit College or University
Abstract

DESCRIPTION (provided by applicant): Secondary structure in single-stranded ONA and RNA is a significant barrier to the efficient hybridization of short oligonucleotide probes. While some probes to a given target hybridize efficiently, other probes to the same target may not hybridize at all. Use of longer probes, on the order of 60 nucleotides in length, is one way to overcome this problem. Unfortunately, such probes cannot be used to directly detect single nucieotide polymorphisms or point mutations. Use of pseudo-complementary (pc) DNA or RNA targets that lack secondary structure should facilitate the use of short probes and enable the development of generic oligonucleotide microarrays wherein every permutation of a short probe (e.g., an 8-mer) is represented on the array. Such arrays are ideally suited to the resequencing of DNA for SNP identification and to the acquisition of genetic profiles for identification purposes. We have shown that nucleoside triphosphates (NTPs) of 2-aminoadenine (nATP) and 2-thiothymine/2-thiouracii (sTTP/sUTP) can be enzymatically incorporated into DNA or RNA. These bases are pseudo-complementary since they don't interact with each other but can individually pair to the regular base complement. In this Phase I proposal we will evaluate whether dNTP analogues of dGTP and dCTP can be used together with dnATP and dsTTP in a primer extension assay to generate structure-free single-stranded DNA that can hybridize to short DNA or RNA probes with high efficiency and specificity. Existing data from ourselves and others indicate that this goal should be readily attainable and would form the basis for evaluating pseudo-complementary DNA and RNA targets for use in conjunction with short probes in a microarray format.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government