You are here

Development of Biomolecular Signatures of Alcohol Exposure and Alcohol-induced Tissue Injury


Acute and chronic alcohol consumption leads to health-related complications and ultimately to significant societal costs. Quantitative and qualitative markers of high-risk drinking behavior and alcohol-induced tissue damage would greatly improve medical efforts to recognize and treat alcohol-related disorders. Traditional biomarkers currently in clinical use lack specificity, sensitivity, and accuracy, and fail to provide long-term information. Biomarkers of sufficient reliability, sensitivity and specificity are likely to be comprised of a panel of physiological parameters, rather than a single molecular entity. Thus, NIAAA seeks to support the discovery and development of pattern-based molecular fingerprints or signatures of alcohol consumption and of alcohol-induced tissue injury. High throughput approaches using genomics, epigenomics, transcriptomics, proteomics, metabolomics, lipomics, or glycomics are encouraged. Biomarker signatures may be composed of multiple genes, RNAs, microRNAs, proteins, or metabolites, or combinations thereof. Furthermore, alterations in lipid, lipoprotein, or glycoprotein profiles may reflect the metabolic effects of alcohol exposure and may be considered as potentially predictive. Biomarker signatures that address multiple aspects of alcohol consumption and alcohol damage are needed. These include, but are not limited to:

A. Biomarkers of long-term alcohol consumption. A biomarker panel reflecting the cumulative intake of alcohol over a period of months or more would be of great diagnostic use, both in terms of recognizing problem drinking and in terms of the potential for organ damage.

B. Biomarkers that distinguish between binge, acute, moderate and chronic drinking. Each of these modes of alcohol intake has different physiological effects. The ability to distinguish dose and timing of drinking would enhance clinicians? ability to design appropriate treatment and intervention protocols.

C. Biomarkers of compliance after withdrawal. Biomarker signatures in this class would be comprised of metabolic products that decrease rapidly upon abstinence, in contrast to the characteristics of biomarkers that reflect cumulative alcohol. The ability to detect relapse accurately will support successful behavioral interventions.

D. Biomarker signatures of alcohol-induced organ damage. The damage due to alcohol consumption is likely to be organ-specific, with signatures reflecting alcohol-induced damage likely to be different for heart damage, liver damage, encephalopathy, a dysregulated immune system, or other alcohol target.

E. Biomarker signatures of familial risk factors for alcoholism. Early identification of subjects predisposed to alcoholism will allow for early intervention, and allow the subject to make informed decisions.

Kathy Jung, Ph.D.



US Flag An Official Website of the United States Government