You are here

NATIONAL INSTITUTE OF BIOMEDICAL IMAGING AND BIOENGINEERING (NIBIB)

Description:

The mission of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) is to improve health by leading the development and accelerating the application of biomedical technologies. The Institute is committed to integrating the physical and engineering sciences with the life sciences to advance basic research and medical care. This is achieved through: research and development of new biomedical imaging and bioengineering techniques and devices to fundamentally improve the detection, treatment, and prevention of disease; enhancing existing imaging and bioengineering modalities; supporting related research in the physical and mathematical sciences; encouraging research and development in multidisciplinary areas; supporting studies to assess the effectiveness and outcomes of new biologics, materials, processes, devices, and procedures; developing technologies for early disease detection and assessment of health status; and developing advanced imaging and engineering techniques for conducting biomedical research at multiple scales. More specifically, the mission of the NIBIB includes the following research areas:

A. Biomaterials. Development of new or novel biomaterials that can be used for a broad spectrum of biomedical applications such as implantable devices; drug and gene delivery; tissue engineering; imaging agents; and biosensors and actuators. Research that is supported includes the design, synthesis, characterization, processing and manufacturing of these materials as well as the design and development of devices constructed of these materials and their clinical performance.

B. Biomechanics and Rehabilitation Engineering. Research on biomechanics which can be applied to a broad range of applications including implants, prosthetics, clinical gait and posture biomechanics, traumatic injury, repair processes, rehabilitation, sports and exercise, as well as technology development in other NIBIB interest areas applied towards biomechanics. Rehabilitation engineering research that is supported includes theoretical models and algorithms for understanding neural, motor, and robotic control strategies; quantitative analysis algorithms for predicting therapeutic outcomes; and early stage development of neuroprosthesis technology, virtual rehabilitation, and robotics rehabilitation.

C. Biomedical Informatics. Development of new technologies to collect, store, retrieve, and integrate quantitative data; large-scale data-driven knowledge base and database methods that support data mining, statistical analysis, systems biology and modeling efforts; and improvement of computer science methods to protect confidentiality of patient data.

D. Drug and Gene Delivery Systems and Devices. Development of new and improved technologies for the controlled and targeted release of therapeutic agents. Areas of emphasis include: the development of new delivery vehicles such as nanoparticles and micellar systems; energy-assisted delivery using ultrasound, electroporation, etc.; and the integration of biosensing with controlled dosage delivery using BioMEMS and other emerging technologies.

E. Image-Guided Interventions. Research on use of images for guidance, navigation and orientation in minimally invasive procedures to reach specified targets. Examples include image-guided interventions for minimally invasive therapies such as surgery and radiation treatment, for biopsies, and for the delivery of drugs, genes and therapeutic devices.

F. Image Processing, Visual Perception, and Display. Study, invention, and implementation of structures and algorithms to improve communication, understanding, and management of information related to biomedical images. Research that is supported includes software and hardware for image reconstruction, analysis, display and perception, visualization, and computer-aided interpretation.

G. Imaging Agents and Molecular Probes. Development and application of novel imaging agents and probes for clinical or pre-clinical applications. Examples of supported research include the development and application of quantum dots, nanoparticles, nanoshells, microbubbles, and radio-labelled contrast materials, and smart imaging agents that are bio-activatible or activated by other chemical, physical, or biological means.

H. Magnetic, Biomagnetic and Bioelectric Devices. Development of magnetic, biomagnetic and bioelectric devices, e.g., EEG, MEG, etc. Examples include (but are not restricted to) novel detectors, increased sensitivity and spatial resolution, improved reconstruction algorithms, multiplexing with other imaging techniques, etc.

I. Magnetic Resonance Imaging and Spectroscopy. Development of MR imaging and MR spectroscopic imaging, for both animal and human research, and potential clinical applications. Examples include (but are not restricted to) fast imaging, high field imaging, design of novel RF and gradient coils, novel pulse sequences, design of novel contrast mechanisms, imaging informatics, in vivo EPR imaging, molecular imaging, etc. The emphasis should be on technological development rather than detailed applications to specific diseases or organs.

J. Mathematical Modeling, Simulation and Analysis. Development of mathematical models and computational algorithms with potential clinical or biomedical applications, including multi-scale modeling, modeling at or above the cellular level, and modeling at subcellular level, including those developed to support technology development in other program areas related to the NIBIB mission. Research that is funded includes studies that focus on the development of algorithms, mathematical models, simulations and analysis of complex biological, physiological, and biomechanical systems and use genomics and proteomics.

K. Medical Devices and Implant Science. Design, development, evaluation and validation of medical devices and implants. This includes exploratory research on next generation concepts for diagnostic and therapeutic devices; development of tools for assessing host-implant interactions; studies to prevent adverse events; development of predictive models and methods to assess the useful life of devices; explant analysis; improved in vitro and animal models for device testing and validation.

L. Micro- and Nano-Systems, Platform Technologies. Development of BioMEMS, microfluidics and nanoscale technologies, including micro-total analysis systems, arrays, and biochips, for detection and quantitation of clinically relevant analytes in complex matrices. Application areas include biomedical research, clinical laboratory diagnostics, biodefense, high-throughput screening, drug delivery, tissue engineering, and implantable devices, among others.

M. Nanotechnology. Research and development of new enabling technologies for the fabrication and use of nanoscale components and systems in diagnostic and therapeutic applications. Examples include: development of new nanoscale patterning and manipulation systems; new approaches to the sensing and quantification of biologically important molecules using nanoscale specific properties; studies relating to the safety and commercialization of nanotechnology-enabled biomedical products.

N. Nuclear Medicine. Research and development of technologies that create images out of the gamma-ray or positron (and resulting photon) emissions from radioactive agents that are injected, inhaled, or ingested into the body and then concentrate in specific biological compartments. Two particularly active areas are the wedding of positron emission tomography (PET) and single photon emission computed tomography (SPECT) to CT and/or to MRI, and the design of higher resolution, lower cost PET and SPECT devices for the study of molecular probes in small animals. Other topics of interest include the development of better radiopharmaceuticals, crystal scintillators, and collimators, and novel approaches to dual-isotope imaging and to dosimetry.

O. Optical Imaging and Spectroscopy. Development and application of optical imaging, microscopy, and spectroscopy techniques; and development and application of optical imaging contrasts. Examples of research areas include fluorescence imaging, bioluminescence imaging, OCT, SHG, IR imaging, diffuse optical tomography, optical microscopy and spectroscopy, confocal microscopy, multiphoton microscopy, flow cytometry, development of innovative light sources and fiber optic imaging devices.

P. Sensors. Development of sensor technologies for the detection and quantitation of clinically relevant analytes in complex matrices. Application areas include (among others) biomedical research, clinical laboratory diagnostics, and biodefense, covering in vitro diagnostics, noninvasive monitoring, and implantable devices. Technologies encompassed include novel signal transduction approaches, materials for molecular recognition, biocompatibility, signal processing, fabrication technologies, actuators, and power sources.

Q. Structural Biology. Development of structural biology techniques, including (but not restricted to) solid state NMR, EPR, synchrotron radiation, etc. The emphasis is on technological development, rather than applications to specific structural biology problems.

R. Surgical Tools and Techniques. Research and development of new medical technologies to improve the outcomes of surgical interventions. Examples of relevant technologies include: minimally invasive surgeries, energy-based interventions such as RF ablation, robotically assisted surgical systems, integration of imaging and interventional modalities, image guided interventions and telehealth.

S. Telehealth. Development of software and hardware for telehealth studies that have broad applications as well as early stage development of telehealth technologies that may have specific focus areas. Research that is supported includes methods to address usability and implementation issues in remote settings, and methods to develop technology for standardizing and incorporating state of the art security protocols for verifying user identities and preserving patient confidentiality across remote access.

T. Tissue Engineering and Regenerative Medicine. Development of enabling technologies including real-time, non-invasive tools for assessing the function of engineered tissues; real-time assays that monitor the interaction of cells and their environment at the molecular and organelle level; predictive computational models for engineering function 3D tissues; high-throughput assays and instruments to reduce the cost, time, and complexity of tissue engineering; novel bioreactor techniques for expanding stem cells and growing tissues and organs on a large scale; and strategies for preserving, sterilizing, packaging, and transporting living-tissue products. The program also supports applications of rational engineering design principles to functional engineered tissues; the development of novel biomaterials for use as tissue scaffolds that mimic the extracellular matrix and support multiple cell types in defined spatial orientation; and engineering approaches to study how biomaterials interact with cells and guide cell growth, differentiation, and migration.

U. Ultrasound. Improvement of technologies for diagnostic, interventional and therapeutic uses of ultrasound. The diagnostic ultrasound program includes, but is not limited to the design, development and construction of transducers, transducer arrays, and transducer materials, innovative image acquisition and display methods, innovative signal processing methods and devices, and optoacoustic and thermoacoustic technology. It also includes the development of image-enhancement devices and methods, such as contrast agents, image and data presentation and mapping methods, such as functional imaging and image fusion. The interventional ultrasound program includes the use of ultrasound for therapeutic use, or as an adjunct for enhancement of non-ultrasound therapy applications. Examples include, but are not limited to, high-intensity focused ultrasound (HIFU) as a non-invasive or minimally invasive interventional surgical or therapy tool, and as an adjunct interventional tool. It also includes the use of ultrasound contrast agents for therapy and for targeted drug delivery, and the use of ultrasound for image-guided surgery, biopsy, and other interventions.

V. X-ray, Electron, and Ion Beam. Enhancement of computed tomography (CT), computed radiography (CR), digital radiography (DR), digital fluoroscopy (DF), and related modalities. Research areas of support include the development of: flat panel detector arrays and other detector systems; flat-panel CT; CT reconstruction algorithms for the cone-beam geometry of multi-slice CT; approaches to radiation dose reduction, especially with CT; and novel x-ray applications, such as those utilizing scattered radiation, tissue-induced x-ray phase shifts, etc.

For additional information on research topics, contact:

Mr. Todd Merchak

National Institute of Biomedical Imaging and Bioengineering

301-496-8592, Fax: 301-480-1614

Email: merchakt@mail.nih.gov

For administrative and business management questions, contact:

Ms. Florence Turska

National Institute of Biomedical Imaging and Bioengineering

301-496-9314, Fax: 301-480-4974

Email: turskaf@mail.nih.gov

US Flag An Official Website of the United States Government