You are here

Division of Pharmacotherapies & Medical Consequences of Drug Abuse


The NIDA Division of Pharmacotherapies & Medical Consequences of Drug Abuse (DPMCDA) supports research aimed at the development and testing of pharmacological and behavioral treatments for drug abuse and addiction. This includes the identification, evaluation, development, approvability, and efficacy testing of new and improved pharmacotherapeutic agents, as well as the testing of marketed medications, and of behavioral treatments used alone or integrated with medications.

A. Chemistry and Pharmaceutics Branch (CPB).

1. Synthesis (either using traditional or combinatorial techniques) or discovery (natural products) of new chemical compounds that would have potential as treatment agents for the medical management of stimulant (e.g., cocaine, methamphetamine, or nicotine) addiction. Consideration should be given to the design of partial agonists or pure antagonists that diminish the reinforcing effects of stimulants, as well as full agonists that could function to normalize physiological activity following discontinuation of stimulant use. The CPB supports research in the design (including molecular modeling and structure-activity relationship studies) and synthesis of novel compounds, formulation development, bioanalytical methods development, and pharmacokinetics/ pharmacodynamics aimed at the discovery and development of new medications for treating drug addiction. Areas that may be of interest to small businesses include, but are not limited to research related to the design and development of new compounds and improved drug products (drug delivery) for the treatment of drug addiction.

2. Compounds of interest include those that are designed to affect dopaminergic (i.e., D1 agonists, D3 agonists and D3 antagonists) activity, CRF antagonists, compounds affecting glutamate activity, GABAergic activity, small molecule neuropeptide antagonists and compounds acting through other mechanisms for which justification has been supplied.

3. Synthesis (either using traditional or combinatorial techniques) of new chemical compounds that would have potential as treatment agents for the medical management of cannabinoid abuse.

4. Development of new immunotherapeutic treatments that would have the potential as treatment agents for stimulant or cannabinoid abuse.

5. Development of heroin/morphine-protein conjugates (heroin/morphine conjugate vaccines) for the treatment of heroin/opiate addiction.

Richard Kline, Ph.D.



6. Development of new approaches for the administration of potential addiction treatment drugs (including small molecules, natural products, peptides, proteins, antibodies, etc.) with poor bioavailability.

7. Development of controlled release dosage forms for addiction treatment medications in order to maintain therapeutic drug levels for extended periods of time to alleviate compliance problems associated with addiction treatment.

8. Development of novel dosage forms or chemical/pharmaceutical approaches that eliminate or significantly reduce the abuse potential of prescription drugs/drug products.

9. Development of novel technologies and strategies to deliver potential therapeutic agents (including small molecules and peptides) across blood brain barrier for the treatment of drug addiction.

Moo Park, Ph.D.



B. Medications Discovery and Toxicology Branch (MDTB). The MDTB supports research on the development of preclinical behavioral models (e.g., of craving, drug-seeking behavior, dependence, or relapse), biochemical assays, gene expressional assays and electrophysiological methods to identify and characterize new medications to treat substance abuse, as well as pharmacological screening of novel compounds to identify potential drug abuse medications. The Branch also supports research on toxicity studies of potential medications for the treatment of substance abuse, and interactions of potential treatment medications with abused substances. Areas that may be of interest to small businesses include, but are not limited to development of new methods for discovery of medications useful in treating drug addiction. Of special interest would be the development of new animal models of addiction, incorporating established drug self-administration techniques that show increased relevance to the clinical setting. Development of relevant biochemical or electrophysiological screening methods is also encouraged.

Jane B. Acri, Ph.D.



C. Medications Research Grants Branch (MRGB).

1. Develop Novel Treatments for SRDs. The MRGB seeks to support the development of novel pharmacotherapeutic- and immunological treatments for persons with substance-related disorders (SRDs). The Branch also supports projects aimed at incorporating technological advances that could be used to more effectively treat SRDs.

This solicitation aims to support small business development of compounds that have completed (or are nearing completion of) successful preclinical evaluation. Treatments should aim to help subjects reduce drug use, become drug free, prolong abstinence/reduce craving, or facilitate survival from drug overdose.

Therapies that small businesses might consider evaluating include, but are not limited to:

? A novel (e.g., new chemical entity, novel drug formulation) that could be used to treat SRDs

? A marketed compound (e.g., SSRIs, anti-epileptic drugs) that could be used to treat SRDs

? Vaccines for substances of abuse (e.g., cocaine, nicotine)

? Monoclonal antibodies for substances of abuse (e.g., methamphetamine, PCP)

? Naturally-occurring compounds (e.g., dietary supplements) that could be used to treat SRDs

? Or, a rationalized poly-therapeutic combination of pharmacotherapies designed to more comprehensively treat SRDs

Treatments that concurrently help alleviate associated psychiatric co-morbidities (e.g., depression, schizophrenia, PTSD, anxiety, etc.) and/or are focused upon underserved/vulnerable populations (e.g., pregnant women and their fetuses, adolescents, racial or ethnic minorities, women/gender issues, subjects within the criminal justice system) are especially encouraged.

2. Development of a Test/Device to More Effectively Diagnose/Manage Patients with SRDs. This solicitation aims to support the identification and development of an innovative test/device that can be used to help more effectively diagnose and/or manage patients with SRDs. The use of this novel diagnostic tool might help to: (1) expedite the development of-, and/or (2) enhance existing treatments for patients with SRDs.

Possible diagnostic tests/devices that a small business might consider, but are not limited to, include:

? An assay/device (e.g., skin sensors, oral swabs) that detects a substance of abuse more reliably than oft-used urinalysis. Optimally, the analytical test/device would be non-invasive and easy-to-use, such that it could be used on an outpatient basis.

? Discovery/development of a diagnostic test/screen that could help physicians more effectively manage treatments for patients with SRDs.

3. Discovery / Development of Biomarkers Related to SRD Treatment Outcomes. Because drug addiction is a brain disease which can change the structure and function of the brain, there is a unique opportunity to develop biomarkers that could reliably predict/assess SRD treatment outcome. To date, evaluations of SRDs often utilize subjective measures (e.g., patient-reported questionnaires) to assess disease progression and primary treatment outcomes. Biomarkers represent a more objective measure of physiological functioning that can be used to predict, diagnose, evaluate the progression of, and/or more accurately assess overall treatment safety and effectiveness.

The goal of this initiative is to support the small business discovery/development of reproducible, quantitative biomarkers related to SRD treatment outcomes. Potential biomarkers might be derived from underlying variations in DNA, gene expression, proteins, metabolism, and/or neuroimages, among others.

4. Creation of a Data Repository/Software Tool for SRD-related Clinical Research Data. Clinical data management is currently heterogeneous. Different investigators use different nomenclatures, definitions, timeframes, data-collection instruments, data analysis and reporting methods. This varied (and often inadequate) data management system severely limits the interpretation of results from clinical trials and complicates the ability to make data-based decisions concerning the overall effectiveness of a therapeutic intervention. Appropriate collection and standardization of clinical trial data should permit, for example, more statistically-valid comparisons of treatment outcomes and data integration, meta-analysis, and aid in the development of more effective, individualized clinical treatments for patients with SRDs.

The purpose of this initiative is to support small business development of repository/software tool that can be used to more efficiently capture and manage (i.e., facilitate/standardize collection, storage, screen/analyze, report) data obtained from NIDA-funded clinical trials. Collection/storage of these data should follow HIPAA guidelines ( to guarantee the privacy and confidentiality of all study participants.

Kristopher Bough, Ph.D.



US Flag An Official Website of the United States Government