You are here

Advanced Laser Source for High-speed Adaptive Optics OCT

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R43EY021396-01
Agency Tracking Number: R43EY021396
Amount: $215,122.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: NEI
Solicitation Number: PA10-050
Solicitation Year: 2011
Award Year: 2011
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
Andover, MA 01810-1077
United States
DUNS: 073800062
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 (978) 689-0003
Business Contact
Phone: (978) 689-0003
Research Institution

DESCRIPTION (provided by applicant): Physical Sciences Inc. (PSI) proposes to develop a new adaptive optics imaging approach to high- speed 3D-retinal mapping with enhanced Fourier Domain Mode-locked (FDML) swept-source technology. PSI is currently engaged in ongoing development of high performance, high resolution multimodal adaptive optics (AO) retinal imagers. Such systems resolve and quantify cone photoreceptors across the macula, image and delineate retinal layers, reveal and map microvasculature,and image deep in the choroid, These multimodal AO systems integrate scanning laser ophthalmoscopy (AOSLO) , wide-field field imaging, retinal tracking, and, to our knowledge, are the first multimodal systems to incoprporate 1-5m swept source-based Fourierdomain optical coherence tomography (AO-SSOCT) suitable for use in a broad clinical population for investigating structural and functional detail. However, in the living, fixating eye, even the smallest motions are magnified relative to the small dimensions of typical AO scan (~1 to 3 deg). At present, with existing spectral domain or swept-source technology, even high-resolution AO-OCT B-scan rates approaching 300/s (~ten times video rate gt500 A-lines per scan) remain too slow to reliably capture the local 3D structure of particular layers, whose lateral motions can be as much as few cone diameters in the inter-line interval of several milliseconds. These scans must reach a speed sufficient to adequately cross-correlate AO-OCT cone images with AOSLO cone mosaics to derive the true multimodal advantage. The recent development of Fourier domain mode-locked [FDML] swept-source laser technology by researchers at MIT has enabled the OCT A-line rate to reach 370kline/s, and beyond. Thus, the resulting accessible B-scan rates at high resolution approach a threshold (gt 1000/s) where motion artifacts from the human eye do not irretrievably disrupt the local cone pattern, which is the best basis for image correction, alignment and mosaic generation over clinicallyuseful retinal areas and volumes. To achieve these capabilities, progress on both practical multimodal AO systems and FDML or equivalent swept-source technologies is needed. PSI and its subsidiary Q-Peak are well positioned to move on both fronts together. In addition, PSI is actively engaged in the development of customized Graphical Processing Unit (GPU) algorithms and systems for real time, high-speed image cube processing that can be applied to AO-OCT. PUBLIC HEALTH RELEVANCE: The advent ofhigh speed, high resolution ocular imaging has opened new avenues of research into the understanding and treatment of eye disease and vision loss. The proposed high performance AO instrument with high speed swept source laser technology will allow powerfulnew adaptive optics technology to be used by greater numbers of clinicians and scientists. These researchers will, in turn, find novel and important uses for this new tool in clinical application for detecting disease and monitoring treatment.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government