You are here

Heat Resistant Portable Helipad


OBJECTIVE: To develop a high temperature and thermally resistant portable vertical takeoff and landing (VTOL) pad system for Marine Expeditionary Airfields. DESCRIPTION: In austere environments, brownout conditions can be a problem to rotary wing aircraft and its personnel. A brownout condition is an in-flight visibility restriction due to dust or sand in the air. in a brownout, the pilot cannot see nearby objects which provide the outside visual references necessary to control the aircraft near the ground. This can cause spatial disorientation and loss of situational awareness leading to a deadly mishap. To combat these types of situations, the USMC installs a lightweight mat vtol pad, such as mobimat, for landing and takeoff. Lightweight mat serves as a dust suppressing material. As rotor wash passes through the semi-permeable mat systems, the dirt, dust, and sand are kept down and prevent the brownout effects. Mobimat fails when subjected to the increased downward thermal loads expected from future helicopters/vertical landing aircraft. The Navy needs research and development of a new lightweight mat with material that is lightweight, strong, and highly heat resistant for compatibility with future aircraft. General requirements: 1. shall be able to withstand 650 degrees fahrenheit minimum for 20 minutes minimum. 2. shall be corrosion and weather resistant 3. shall be lightweight and quickly installed 4. the mats shall be interchangeable with one another 5. shall have a minimum air permeability of 600cfm/ft^2 in accordance with astm 737 6. shall have a minimum puncture strength of 630 lbs in accordance with astm 6241. 7. shall have a minimum tensile strength of 500 lbs in accordance with astm 4632. 8. shall have a minimum tear propagation of 115 lbs in accordance with astm 4533. 9. shall require minimal ground preparation 10. securable to ground with 1.375 diameter grommets 11. shall suppress dust kick up from aircraft 12. the maximum mat density shall be 0.35 pounds per square foot, with a maximum mat volume of 0.1 cubic feet per square foot. The Navy will consider proposals such as new matting systems, improved matting materials, or heat shielding technologies compatible or integrateable with mobimat. PHASE I: To determine feasibility of design to meet requirements, and provide defendable estimates for: cost, required manpower and support equipment for installation, and system producability, reliability, and maintainability. Prove structural and thermal properties through either analysis and/or limited lab demonstration (preferred). PHASE II: Develop a full scale prototype and demonstrate system reliability in a relevant environment. The demonstration will analyze the VTOL pad for physical and thermal damage as well as anchor loading and dust suppression caused by aircraft during different landing and takeoff procedures. A successful demonstration will also exhibit fast setup and installation. PHASE III: The developed technology will be produced for transition to the fleet. PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: The technology developed may have civil/commercial applications for temporary VTOL helipads and high strength thermally resistant geotextile applications.
US Flag An Official Website of the United States Government