Description:
OBJECTIVE: Develop an antenna design tool that will produce antenna CAD models and design candidates optimized for use in CEM on-aircraft antenna analysis. DESCRIPTION: It is vital to understand the installed performance of antennas as mounted on a platform and in the presence of cosited antennas. The two alternatives for quantifying installed performance are measurement and simulation. Measurements are costly and often impractical during the design phase of antenna/platform integration. At the same time, computational electromagnetic (CEM) techniques and codes continue to mature, and CEM tools are increasingly used to assess installed performance for a known antenna placement or to optimize the placement for a given mission. Regardless of the CEM technique employed, one must ultimately acquire or develop a functional CAD model of the antenna in order to execute platform-level CEM simulations. Many aircraft antennas are commercial-off-the-self (COTS). While manufacturers typically provide limited, top-level performance specifications and physical characteristics for their antennas (e.g., frequency range, impedance, VSWR, peak gain, highest sidelobe, principal-plane pattern cuts, power capacity, polarization, weight, form factor), they seldom make available engineering data that enables installed performance CEM simulations involving their products: the internal geometric and material structure of the antenna, its feed structure, and associated circuitry. If the function that the antenna performs is known, this helps to identify the basic antenna type but not its detailed design and engineering. Even when the detailed antenna design is known, its structure may be too complex to develop a workable CEM CAD model within the constraints of time and budget. If a similar radiation pattern and input impedance can be achieved with a simpler CEM CAD model, useful installed performance results can still be obtained. The above demonstrates the need for a methodology (and for its implementation in software) that can produce a physical or CEM CAD model of an antenna given a subset of top-level performance data, physical characteristics, and functional purpose/type (e.g., radar, GPS, direction finding, electronic steering, etc.). Given such inputs, the capability should also produce candidate design types to assist in the selection of COTS antennas. A well-designed graphical user interface (GUI) should guide the user through the process of engaging this capability. If computationally intensive, the software should run efficiently on CPU and CPU/GPU clusters. All supporting modules in the software should either be the intellectual property of the proposing company or secured through licensing so that the tool can be commercialized. PHASE I: Develop and demonstrate a methodology that uses COTS antenna performance and physical data to yield antenna designs and their physical descriptions. Develop a set of metrics to gauge the quality of the design versus spec. Make a list of antennas for aircraft and prioritize according to antenna complexity. Consult with the TPOC regarding interfaces between the Navy's CEM codes and the proposed tool. Develop a detailed outline of the tool requirements, including the GUI. PHASE II: Convert the process developed in Phase I into an engineering tool, including computation engine, GUI, and interfacing to Navy CEM codes. Validate the tool on cases of interest to NAVAIR. Make necessary arrangements to commercialize the tool either in partnership with another company or alone and seek potential sponsors. PHASE III: Refine methodology and tool developed in Phase II either alone or in partnership with another company. Port the tool to clusters of CPUs and CPU/GPUs. PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: The technology developed under this topic has direct utility in a wide variety of commercial and military applications, such as radar, wireless communications and navigation.