You are here

s Performance Measurement

Description:

OBJECTIVE: To accelerate the integration of advanced sensor technology into synthetic mannequins to facilitate objective measurement of user metrics during both training and education activities. At the end of Phase I, a proof of concept must be demonstrated and at the end of Phase II an integrated prototype (Beta) must be developed and demonstrated. DESCRIPTION: Mannequins are currently a common tool for medical training and education. Many of these have a hard exterior cover and lack adequate and/or appropriate modeled internal anatomy and thus may not even be considered for open surgical procedural training and/or laparoscopic / endoscopic procedural training. Although these existing mannequins are functionally capable of objectively measuring a user"s actions, this functionality is not adequate for tracking the performance of open procedures. In some cases, the space requirements for the sensor and communication apparatus prevent the user from performing other procedures entirely. Anatomically appropriate synthetic models have been developed and some of these have different tissue properties and may possibly serve the open and laparoscopic surgery community. The structure of these synthetic models allows trainees to dissect, cut, suture, and potentially perform a broader-range of tasks than are currently available on most commercially available mannequin(s). Mannequins which incorporate synthetic models representing a variety of tissues and/or tissue planes that are currently under development require further functional testing and validation and most still need an expert to review the novices actions subjectively. One effort that could accelerate this validation process would be the integration of advanced sensor technology to track and report on user manipulation of the specific tissues and connected with the overall systemic model. Existing advanced sensor technology is sophisticated enough to allow for the integration of embedded sensors into these mannequins/models to facilitate the measurement and reporting of targeted metrics. The integrated model as a whole must be reusable and have a high degree of repeatability of measurement. The sensors employed must provide for economical use in repeated training exercises either through high quality, durable components or low cost replaceable ones. The overall design must support repeatability of measurement in either case. The integration of the sensors with the tissues must detect dissection of tissue planes, incisions into/through tissues, and suturing (approximation) of the modeled anatomy to name a few. In addition, the advanced synthetic mannequin should replicate as much of the systemic human physiological response system as possible (i.e. changes at the tissue level have systemic affects that should be represented. Sensors implemented at the tissue level need to be integrated with other sensors and communicate data to and from other systemic sensors to measure and communicate data and information such as blood pressure, pulse, respiratory rate, stroke volume, tidal volume, pCO2, renal output, and glomerular filtration rate to name a few to the end user. The goal is to provide as realistic of a human response to interventional procedures on the synthetic mannequin as possible while also providing objective measurement of user metrics during both training and education activities. PHASE I: Deliverable at the end of Phase I: a proof of concept for integrating advanced sensor technology with the synthetic tissues/organs demonstrating the ability to detect several different parameters including (no particular order) 1) force(s) exerted on the tissue, 2) direction(s) the force(s) applied, 3) cutting or tearing of tissue(s), and 4) forces for approximation of tissue. Must provide preliminary data relevant to the robustness and repeatability of measurement of the sensor systems and the synthetic tissue. In addition to the monthly reports and final reporting requirements, an initial concept design for an integrated system must be delivered as well. A Review will be held around the 5th or 6th month at the government site Fort Detrick, Maryland to present and demonstrate the proof of concept developed and results obtained to date. Suggested alternates to sensors used during Phase I as well as suggested alternate bio-materials used for synthetic tissues need to be considered as a part of the research. The Phase I proposal must include projected concept and develop key component technological milestones, have a preliminary methodology on how analysis of the predicted performance of both the sensors and the synthetic tissue in addition to items such as working hypothesis, clinical impact, military impact, technical tasks, research methodologies supporting the hypothesis, and statement of work. No trials/studies needing Institutional Review Board (IRB) during Phase I will be accepted. PHASE II: At the end of Phase II, it is expected that a fully integrated prototype system (i.e. integration of sensors, synthetic material with properties mimicking tissue, and software) be demonstrated and the demonstration is included as a final project deliverable (i.e. presentation at the government site Fort Detrick, Maryland). This integrated prototype system must provide sensing capabilities at both the tissue and system levels and provide the end user with objective data regarding the performance of the trainee. Examples of sensing capabilities are, but not limited to (and in no particular order), 1) force(s) exerted on the tissue, 2) direction(s) the force(s) applied, 3) cutting or tearing of tissue(s), 4) approximation of tissue, 5) occlusion and the release of occlusion of tissue, 6) application of energy onto the tissue, 7) multiple tools (hands / fingers can be included as"tools"applied to the tissue (such as the concept of retraction) to name just a few, and 8) measurement of"fluids"within the vasculature to name a few. Preliminary validation of the tissue level sensor and synthetic model is mandatory: this would include items, but not necessarily limited to, detection of stretch and how much tension and distance is used on the tissue, detection of tissue cut and percentage cut (note, need to detect partial tissue cuts), tissue approximation and how much tension was placed on the tissue during approximation, and if tissue has been occluded (including partial occlusion) and release of occlusion. Validation at the systemic level (refers to something that is spread throughout, system-wide, affecting a group or system such as a body) is optional. Data from these studies are an anticipated outcome of Phase II and data should be analyzed, summarized, and presented in the final report. At the end of Phase II it is also expected that preliminary specifications on synthetic tissue model are provided, and sensor specifications are outlined. Preliminary data regarding robustness, reliability, accuracy, and repeatability is optional as a delivery at the end of Phase II. Estimated cost for production of prototype based on costs of sensors, synthetic tissues, other materials and supplies, labor, and overhead required to produce the prototype be provided as a deliverable. Descriptions of preliminary estimated product life and robustness of synthetic tissues and sensors should be provided, and a concept of the overview of maintenance should be included in the final report. Phase II should also include a preliminary evaluation by Subject Matter Experts (SMEs). These SMEs should not have been a part of the requirements and development and should serve only in the evaluation portion. These SMEs are not required to be military and/or government, but need to be in good standing with their respective organization and professional society. Evaluation should include clinical relevance as well and may include content and/or construct methodologies. Summary and analysis of data needs to be included as a deliverable. The Phase II proposal should include a commercialization plan/strategy, including letters of support or agreements if applicable. This commercialization plan should include analyses of customers (types and size), market opportunities and value, cost estimate of the unit for production and for sale, and projected company"s sales, revenues or operating loss. PHASE III: A fully robust, ergonomic, cost-effective, manufactured commercialize product should be developed. Manufacturing capabilities and scale up plans provided. Test results on robustness, shipping, electrical safety testing, accuracy, consistency, and repeatability should be included. Specifications of manufactured product as well as manufacturing process need to be prepared and finalized. Materials, material properties, and conditions under which product may be shipped and stored are needed.
US Flag An Official Website of the United States Government