You are here

Prototype, Open-Source, Universal Healthcare Exchange Language


OBJECTIVE: Prototype architecture to execute an open source, universal health exchange language, as described in a recent President"s Council Of Advisors On Science And Technology (PCAST) Report. DESCRIPTION: Most DOD, VHA, and civilian healthcare systems encounter significant challenges in exchanging health information due to the lack of a universal health exchange language. Without effective health information exchange, continuity of patient care is less than optimal, healthcare access and availability are hampered, and healthcare costs increase. This topic is of particular importance to DOD, which is a provider and payer of care for 9.6M beneficiaries. Two thirds of military healthcare is delivered in the civilian sector. As a matter of background, the PCAST Report On"Realizing The Full Potential Of Health Information Technology To Improve Healthcare For Americans: The Path Forward", sets forth general recommendations regarding how healthcare information technology can be used to improve healthcare access, availability, acceptability, continuity, cost-effectiveness, and quality. The report cites the beneficial work of the HHS Office of the National Coordinator (ONC) for Healthcare Information Technology in developing standards and an initial nationwide healthcare information exchange to share data to improve healthcare delivery and support research for the public good. The report points out that"national decisions can and should be made soon to establish a"universal exchange language"that enables health IT data to be shared across institutions; and also to create the infrastructure that allows physicians and patients to assemble a patient"s data across institutional boundaries, subject to strong, persistent, privacy safeguards and consistent with applicable patient privacy preferences."The PCAST report further states that,"creating the required capabilities is technically feasible, as demonstrated by technology frameworks with demonstrated success in other sectors of the economy. The best way to manage and store data for advanced health informatics is to break data down into the smallest individual pieces that make sense to exchange or aggregate. These individual pieces are called"tagged data elements, because each unit of data is accompanied by a mandatory"metadata tag"that describes the attributes, provenance, and required security protections of the data."Current state: Some research surrounding use of healthcare metadata is underway and moving from academic labs into some early practical uses, such as demonstrated by Dr. Parsa Mirhaji for use in public health surveillance. Much of this research has been conducted using semantic web technologies employing the Resource Descriptive Framework (RDF), and Web Ontology Language (OWL), and query technologies such as SPARQL, which utilize the concept of"tuples", (subject, predicate, object), to relate data and achieve semantic interoperability. Other similar technologies exist, such as those from Metadata, Inc., although the semi-proprietary Metadata language, parts of which is available from Open Health Tools, is based on quintuplets vice tuples. Through their Health Data Dictionary (HDD) product, 3M has also supported some degree of semantic interoperability, using a knowledge representation scheme linked to a unique concept identifier, but it is not a true first-order predicate logic ontology. Language and Computing, now owned by Nuance, developed LinkBase, the world"s largest medical ontology, with limited commercial success. Adoption of these commercial technologies may have been limited by their proprietary, versus open nature, and associated licensing costs. It may be possible for some of these commercial technologies to be made open source, with companies then selling services around their technology, but this is a business decision that is up to the companies. Moving towards developing open source terminology mediation services may place these companies in a position wherein the Office of the National Coordinator for Healthcare IT could adopt those terminology mediation services for use in the Nationwide Health Information Network (NwHIN), and NwHIN Connect and Direct products (typically using a Berkeley Software Development License). In any event, the environment is ripe for continued academic and commercial collaboration under an STTR to advance the domain. Desired State: Research conducted under this topic will directly support the PCAST and ONC visions, but would be conducted primarily on behalf of the Military Health System, which provides an integrated healthcare delivery system for 9.6 million beneficiaries. This care is delivered through a combination of direct care Military Treatment Facilities and private healthcare delivery organizations under the TRICARE triple option health benefits program. Nearly two thirds of healthcare is delivered to military beneficiaries through the private sector. Given that military families are also highly mobile, moving on average every three years to new duty stations, finding a way to exchange data and create a longitudinal virtual electronic health record is an important objective of military medicine. Clearly the research would also be extensible to other national publically and privately funded healthcare delivery systems and information exchanges. The prototype to develop a universal exchange language for healthcare information and a digital infrastructure for locating patient records while strictly ensuring patient privacy may employ the U.S. Army Telemedicine and Advanced Technology Research Center"s (TATRC) Early Stage Platform (ESP) for Research and Development, which provides a fully replicate DOD Electronic Health Record and CHCS computerized physician order entry and results retrieval system for third party development, using virtual machine access. TATRC will coordinate this research closely with HHS, Office of the Nationwide Healthcare Information Coordinator, the Veterans Administration, and with the Center for Medicare Services (CMS). It is fully expected that the research will be extendable into the public good and will benefit the development of new electronic health records developed by the private sector that would utilize the universal exchange language. PHASE I: In Phase I, the awardee will outline a strategic, operational, and technical alternatives to creating a prototype, open source, universal health exchange language service that can operate as a service on the NwHIN, and support health exchange for military medicine. Phase I work should center on a limited number of use cases to be determined in conjunction with the government Contracting Officer Representative. Phase I will also provide opportunity for consultation with ONC for Healthcare IT and other subject matter experts. At the conclusion of Phase I, the awardee will recommend a technical reference implementation architecture, which will then be built as a prototype in Phase II of the SBIR. PHASE II: In Phase II, the awardee will build the universal health language prototype, as an open source service on the NwHIN Connect solution, and demonstrate the exchange of military, VA, and civilian health data with semantic interoperability in a laboratory setting, potentially using the TATRC early stage platform for research and development. At the conclusion of Phase II, the prototype will be demonstrated to U.S. Army TATRC, Military Health System, HHS ONC for Healthcare IT, HHS CMS, Veterans Administration, and other government officials. PHASE III: In Phase III, the universal health language service would be implemented on the NwHIN, or otherwise in local or regional health information exchanges to support scalable terminology mediation between electronic health records systems. Such work may also be commercialized and of interest to commercial electronic healthcare vendors. Ideally, the universal health language service would be an open source service, with the vendor choosing to sell services around the open technology.
US Flag An Official Website of the United States Government