Description:
OBJECTIVE: To research and develop a modular, ruggedized, Improved Solar Shade (ISS) material and deployment system. DESCRIPTION: Solar shading has been demonstrated to be the most cost effective approach to reduce fuel consumption for climate control in expeditionary shelters. These relatively simple, low cost shades have a very high Return on Investment (ROI). Current solar shade systems lack in durability as they have typically only lasted through about one (1) year of use. [10] This design life is severely less than the shelters, supplies, and equipment that the shade would protect and cover. The strike and erect process of solar shades after they have been used for an extended period of time often result in fabric tearing in the degraded material. Data collection through Net Zero+ Joint Concept Technology Demonstration identified solar shading as one of the most significant energy saving solutions for expeditionary shelters in warm climates, offering a dramatic ROI. [12] Providing greater than 70% solar block capability and an air gap (convective cooling) between the shade and the covered object greatly lowers the effects of solar heating. With shading: Shelters demand significantly less energy to maintain a constant cool temperature Environmental Control Units (ECU) function more efficiently Fuel and water bladder material lifespan can increase. Supplies and other equipment remain cool and pose less of a hazard. A new solar shade system is desired that is designed to shade objects with various forms to reduce visual signature and lessen volume of the packaged system. This is best facilitated by employing modules or kits, for example, using a large initial"starter kit"to cover a 32 foot long TEMPER-Air Supported shelter with available add-ons for shading vestibules, ECUs, or annexing kits. Starter kits could also vary in size based on the shelter, equipment, or supplies being covered. The following are the technical requirements for the shading material: Characteristic............................Requirement........................................Test Method Fabric Weight (oz/yd2).......................≤ 10............................................ASTM D 3776 Breaking Strength (lbs.) ....Warp............................................200............................................ASTM D 5034 ....Fill................................................200 Tear Strength (lbs.) ....Warp............................................20..............................................ASTM D 1424 ....Fill................................................17 Flame Resistance ....Initial ........After Flame: ............Warp (seconds)........................2 ............Fill (seconds.............................2..............................................ASTM D 6413 ........After Glow:..................................................................................NFPA 701 ............Warp (seconds)........................3 ............Fill (seconds)............................3 ........Melt Drip: ............Warp (inches)..........................0 ............Fill (inches)..............................>0 Burst Strength (lbs.).............................175...........................................ASTM D 3787 Opacity (of visible light).........................T: 70%, O: 90%.........................ASTM D 5780/5781 Air Permeability (CFM/ft2)......................Minimum of 900...........................ASTM D 737 Gloss ....60o specular gloss............................2%............................................ASTM D 523 ....85o specular gloss............................2% Reliability (months)...............................................................................No degradation of mission ..........................................................................................................performance after exposure ..........................................................................................................to temperature extremes, ..........................................................................................................weathering, UV, mildew or .........................................................48 (active)..................................POL. .........................................................96 (stored) ..........................................................................................................MIL-STD-810 ..........................................................................................................FED-STD-191, method 5804 ..........................................................................................................AATCC, Method 159 (UV) ..........................................................................................................ASTM G 21 (mildew) Toxicity..............................................Nontoxic.....................................Nontoxic to the skin or eyes Color..................................................Tan (686A) .........................................................or .........................................................Green (383)................................FED-STD 595 PHASE I: Develop a new, more ruggedized solar shade material that can withstand a higher degree of environmental effects (primarily UV, high wind loads) and achieve a longer useable lifespan than the first generation. The total life span for the new solar shade will be four (4) years. The objective is to accomplish this increased durability while maintaining or improving upon the shading ability and its energy saving effects. Measuring the improved shading will consist of opacity thru the shade; a standard test shown in the chart above. [2] The improved durability will include a longer life span, less tearing in the fabric and less degradation in the material. Measuring the durability of the solar shade will consist of strength testing, the weathering of the material, and air permeability tests; these tests are all referenced in the above chart. [2] The fabric weight must be less than 10 oz/yd, as shown in the chart. [2] The package volume should be no greater than the current solar shade system (NSN 5410-01-519-7185); the system as a whole should be optimized for both weight and packing volume. For reference purposes, a 50 foot by 50 foot solar shade system weighs 220 pounds and should be optimized for packing volume. Deliverables for Phase I would include samples of all of the improved fabric/material considered for shading, environmental, and durability testing. Only one fabric/material solution is required, but multiple are acceptable for Phase I. Sample sizes for each of the prototype materials should be no less than fifteen (15) continuous yards for testing and evaluation of the prototype material. In addition to an improved material, an improved system for assembly and system deployment is also desired. The second Phase I deliverable will be to provide multiple concepts and/or models for an ISS deployment system. PHASE II: Phase II should consist of optimizing the shade material developed in Phase I for manufacturing large quantities and continuing to develop the ISS deployment system. The objectives will include developing"starter kit"systems that are form fitting to the shelter to reduce system volume and weight. The second objective will be to continue to develop multiple"add-on kit"designs. By the end of Phase II, the ISS material and system should comply with all the characteristics/metrics described in this solicitation. The deliverables will be five (5) full ISS system"starter kits"for 32 foot long TEMPER-Air Supported shelters, two (2) vestibule"modules,"and one (1) annexing"module"for testing and evaluation purposes. The ability of the starter kit to integrate with each module type will also be evaluated. These kits will include the new ISS fabric/material and all hardware required for deployment. The cost goal for the ISS system should be roughly the same as the current systems, ~$1/square foot, or less. PHASE III: Phase III should include a manufacturing plan for full scale production and supply for this technology as part of a commercialization strategy. As discussed in this solicitation, shading is the most efficient way to reduce the energy demand caused by solar heat load. The return on investment (ROI) on solar shades is very high in comparison to other technical solutions. A more durable ISS could benefit all the US armed forces branches that deploy temporary structures in addition to benefiting any commercial or industrial temporary structures under high solar heat load. This technology could be used to reduce energy costs in both Contingency and established bases as solar covers over shelters and can also reduce heat load in open environment areas for stored equipment and maintenance facilities. The solar shading fabric technology has commercial and residential applications that include skylight covers, patio covers, awning applications, event shading, and shading systems for parking lots.