You are here

Light weight Rubidium-Metal Vapor Circulating System

Description:

OBJECTIVE: Develop and demonstrate an innovative, lightweight, and contamination resistant Rubidium Helium circulation system suitable for supplying the gain medium of a Diode Pumped Alkali Laser System (DPALS) DESCRIPTION: This topic addresses material technologies focused on enabling advanced closed cycle flowing media laser systems that offer compact directed energy system solutions for future ballistic missile defense applications. Specifically technologies enabling (or the creation of) a lightweight, contamination resistant Rubidium Helium circulation system. A fundamental component of Diode-Pumped Alkali Laser Systems (DPALS) is a closed-cycle circulating system capable of delivering of a mixture of helium (He) gas and rubidium-metal (Rb) vapor to a test cell at a specified temperature, pressure, flow rate, and rubidium concentration. Consideration will be given only to those proposals in which: 1. contamination of the mixture by water and oxygen are considered (a repeat of the Fort St Vrain generating station experience is not desired), 2. alkali-metal vapor corrosion-resistant materials of construction are featured, 3. commercially-available industrial hardware are used, and 4. minimization of the total weight of the system is considered. DPALS performance data or information is not required for this topic. PHASE I: Prepare and deliver a technical data package or design package, for MDA review, for a closed-cycle circulating system for the Phase II effort. Emphasis will be placed on unique and innovative ways to make the system out of materials that are contamination resistant and light-weight. PHASE II: Design, procure, install, and test a demonstration system capable of circulating one (1) gram per second of the mixture in the pressure and temperature ranges of 10 20 atm and 150 225 C. The rubidium concentration should be delivered at 90% of saturation concentration. The test cell pressure drop is on the order of 5% of the total pressure. Deliver a report on the as-built system in a technical data package which includes but is not limited to system drawings, performance, material and energy balances, and observations relative to required changes for Phase III. PHASE III: Design, procure, install, and test a demonstration system capable of circulating ten (10) grams per second of the mixture in the pressure and temperature ranges of 10 20 atm and 150 225 C. The rubidium concentration should be delivered at 90% of saturation concentration. The test cell pressure drop is on the order of 5% of the total pressure. Deliver a report of the as-built system in a technical data package which includes but is not limited to system drawings, performance, material and energy balances, and observations relative to required changes for commercialization. COMMERCIALIZATION: Exact commercial applications other than Rb-He and other alkali-metal laser systems are unknown; however, the contractor is highly encouraged to identify possible uses in the scientific community such as Rubidium vapor system have applications to atomic clocks and medical devices.
US Flag An Official Website of the United States Government