You are here

Solid State High Energy Laser Batteries and Power Sources


OBJECTIVE: Develop an innovative, lightweight, and robust power system that is scalable from 100kw to a system capable of powering the diodes arrays of a diode pumped MW class high energy laser system. Such a power system would include the batteries, hardware and electronics necessary to power high energy laser diodes. DESCRIPTION: The next generation of technology for laser weapons, i.e. diode pumped or fiber, requires significant electrical power for driving the laser and supporting systems. Compact and lightweight power generation, storage, and conditioning are necessary for transitioning the laser technology to an airborne platform for missile defense. On-demand power of 1MW to 10MW is required for continuous laser operations for 10"s of seconds at a time with minimal down time between shots (<1 min). Realistic available on-board power is limited to 5KVA to 10KVA and is typically 3-phase, 115/200 VAC, line-to-neutral, up to 400 Hz variable (Ref 1); on-board power is usually very noisy. Technology considered under this topic must be able to operate in a closed environment and withstand the effects of a high altitude environment. This topic seeks to produce a robust lightweight power source to operate on an airborne platform. The architecture must include batteries and other hardware sufficient for conditioning the power out of the batteries to power laser diodes and heat exchangers. The architecture must also be scalable to MW of power. PHASE I: Develop a preliminary design for the proposed power system or subsystem. Proof of concept hardware development and test is highly desirable. Proof of concept demonstration may be subscale or specific risk reduction activities associated with critical components or technologies. Test results (if performed) should be used in conjunction with Modeling and Simulation results to verify scaling laws and feasibility. Phase I will include the development of plans to further develop/exploit this technology in Phase II. Offerors are strongly encouraged to work with system and/or payload contractors to help ensure applicability of their efforts and begin work towards technology transition. PHASE II: Complete critical design of prototype component including all supporting MS&A. Fabricate a prototype or engineering demonstration unit (EDU) and perform characterization testing within the financial and schedule constraints of the program to show level of performance achieved compared to stated government goals. In addition, environmental testing showing traceability to the flight environment is desired. The final report shall include comparisons between MS&A and test results, including identification of performance differences or anomalies and reasons for the deviation from MS&A predictions. The contractor should keep in mind the goal of commercialization of this innovation for the Phase III effort to which end they should have working relationships with, and support from system, and/or payload contractors. PHASE III: Develop and execute a plan to market and manufacture the product developed in Phase II. Assist the Missile Defense Agency in transitioning this technology to the appropriate Ballistic Missile Defense System (BMDS) prime contractor(s) for the engineering integration and testing. The contractor will pursue commercialization of the various technologies developed in Phase II for potential commercial uses such as emergency power generators, photovoltaic power inverter, or electric vehicles. COMMERCIALIZATION: The contractor will pursue commercialization of the various technologies developed in Phase II for potential commercial uses in other DOD high energy laser systems and airborne/ space applications with similar power requirements.
US Flag An Official Website of the United States Government