You are here

Low Power, Long Life, Smart ISR Sensors

Description:

OBJECTIVE: Provide very low to ultra low power smart ISR sensors to enable long term unattended situational awareness. DESCRIPTION: Battlefield threat identification and intrusion warning remains a high importance topic to OSD, Navy and Marine Corps. For applications such as securing high valued assets to securing areas of interest, the life expectancy of the energy source and processing power requirements remain the limiting factors in determining how long sensing and analytic capabilities can remain operative while unattended. The need for long term smart sensing technologies was articulated by General Petreus recently when he requested urgent action in identifying technologies for container security. The long range goal is to investigate and validate the feasibility of producing a sensor field cognitive sensor manager that can discover and task low cost, ultra low power sensors and supporting analytic services to enable area and container situational awareness for extended periods of time. Networked sensors should be able to monitor situational awareness factors such as temperature, shock, acceleration, acoustics, the presence of tagged objects and other sensor signals. Shared network analytic services should be able to perform the fusion of data required to enable situational awareness using power aware and efficient algorithms. The overall sensor field should be able operate, in ultra low power, semi-dormant modes, until a trigger of interest occurs. Once a trigger occurs, additional sensors and analytic services should be activated as required to develop situational understanding. The sensor field also needs to be able to transmit relevant alerts to a larger enterprise as required. The trigger (set of rules) should be programmable in easy office tools by the users to establish the criteria that should produce an alert. To support versatility of this technology, the sensor package should provide a family of compatible micro sensors, a library of application services and programmable user modules to allow the users to easily select rules of relevance to their application. The sensors should be able to function alone or in collaboration with other sensors to produce actionable intelligence. The target life sensor string life expectancy is ten years. Sensors used in demonstrations should not exceed the size of commonly used low profile RFID devices used to tag valued assets. The specific goal of this topic is to investigate and validate the feasibility of developing a power efficient cognitive sensor manager that can provide dynamic and situational control of a diverse array of smart micro sensors and activate analysis services as needed to achieve and maintain situational awareness while minimizing the overall power consumption of the sensor system. It should be assumed that sensors need to be distributed across an area of interest, on containers and may even need to be on individual assets contained within the containers. Sensors modalities can include active and passive RFID devices, cameras, audio sensors, etc. as needed to secure the environment. Data fusion services need to be discoverable by the cognitive sensor manager. The overall system should be able to provide a clear picture of the"life"and associations of containers. To this end, power efficient cognitive or other advanced algorithms will need to be matured that can provide an understanding of the area surrounding a container. Likewise a power efficient cognitive sensor manager is needed that can discover and task distributed sensors as needed. This topic includes development of algorithms required to perform necessary sensor and data fusion using ultra low power or equivalent processing techniques and processors. Challenges for this topic include the 1) development of power efficient sensor and service discovery protocols; 2) development of a library of friendly rule selection modules for various applications; 3) identification of small, low power, low cost sensors and application services that can support the above mentioned processing and life expectancy; 4) development of a power efficient, mission aware cognitive sensor manager The overall goal of the topic is to develop an ultra low power, low cost, smart sensor capability to provide real time container security for many years. The Navy will only fund proposals that are innovative address R & D and involve technical risk. PHASE I: Complete a feasibility study and research plan that demonstrates the ability of a power efficient cognitive sensor manager to effectively control low power, long life, smart sensors and power efficient fusion algorithms. The development should enable a power efficient framework not unlike the ozone widget framework SOA architectures are increasingly based upon. A feasibility demonstration should show the potential of the developed cognitive sensor manager to utilize power efficient microsensors and fusion services to maintain situational awareness of containers and areas for many years. In the phase 1 effort performers may utilize any of the small, lower power sensors currently available in the open market. Performers can also select from readily available low power processors to host the control algorithms and rule sets. Demonstration of feasibility should bear in mind that future work (Phase II, etc) will be aimed at ultra low power techniques to support a system like goal of ten years. The feasibility plan should clearly identify the critical technology elements that must be overcome to achieve success and the approach to overcome these. Technical work for all phases should focus on the risk reduction of critical technology elements. Prepare a research plan for Phase 2. PHASE II: Produce a prototype of an ultra low power cognitive sensor manager that controls low power, long life, smart sensors and power efficient discoverable applications that can be demonstrated in a realistic environment. The prototype should demonstrate the viability and potential benefits of the system to long term container and area security applications. The prototype should be relevant to both DoD and commercial use cases. Deliver a technology transition/commercialization plan. PHASE III: Produce a system capable of deployment and operational evaluation. Demonstrate the system in a relevant setting in a stand-alone mode and as a component of larger system (programs of record). The work should focus on tailoring the developed capability in order to achieve a transition to a program of record in one or more of the military Services. The system should provide metrics for performance assessment. PRIVATE SECTOR COMMERCIAL POTENTIAL: The development of long lasting smart sensors that can automatically surveill an area would be valued by the private security market as well as by other government agencies. The requirement for persistent surveillance at places of interest remains high in the post"9-11"time period. REFERENCES: 1. Mark Hempstead, Nikhil Tripathi, Patrick Mauro, Gu-Yeon Wei, David Brooks, An Ultra Low Power System Architecture for Sensor Network Applications (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.636 & rep=rep1 & type=pdf ) 2. Container Security Initiative, 2006-2011 Strategic Plan, U.S. Customs and Border Protection
US Flag An Official Website of the United States Government