You are here

Dx Ear: An automated tool for diagnosis of otitis media

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R41DC010283-01A1
Agency Tracking Number: R41DC010283
Amount: $172,771.00
Phase: Phase I
Program: STTR
Solicitation Topic Code: NIDCD
Solicitation Number: PHS2010-2
Timeline
Solicitation Year: 2010
Award Year: 2010
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
5001 Baum Blvd. Suite 644
PITTSBURGH, PA 15213-
United States
DUNS: 146794537
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 JELENA KOVACEVIC
 (412) 268-2662
 JELENAK@CMU.EDU
Business Contact
 CONSTANTINOS NIKOU
Phone: (412) 268-8746
Email: kbasile@andrew.cmu.edu
Research Institution
 Carnegie-Mellon University
 
5000 Forbes Ave
Pittsburgh, PA 15213-
United States

 () -
 Nonprofit College or University
Abstract

DESCRIPTION (provided by applicant): Otitis media is a general term for middle-ear inflammation that is classified clinically as either acute otitis media (AOM) or otitis media with effusion (OME). AOM represents a bacterial super infection of the middle ear fluid and OME a sterile effusion that tends to subside spontaneously. Antibiotics are generally beneficial only for AOM. Accurate diagnosis of AOM, as well as distinction from both OME and no effusion (NOE) requires considerable training. AOM is the most common infection for which antimicrobial agents are prescribed for children in the US. By age seven, 93 percent of children will have experienced one or more episodes of otitis media.1 AOM results in significant social burden and indirect costs due to time lost from school and work. Estimated direct costs of AOM in 1995 were 1.96 billion and indirect costs were estimated to be 1.02 billion, with a total of 20 million prescriptions for antimicrobials related to otitis media.2 Given these considerations, our goal is to: Develop a software tool to classify images into one of three stringent clinical diagnostic categories (AOM/OME/NOE), and validate the algorithm on tympanic membrane (TM) images. We have assembled a strong multidisciplinary team that can successfully develop an automated diagnostic algorithm in this Phase-I program. We have (1) gathered a team of nationally-recognized otoscopists with substantial clinical and research experience in the context of AOM clinical trials; (2) studied the predictive value of diagnostic findings in discriminating AOM from OME from NOE; (3) acquired a large number of TM images from children; and (4) involved an internationally recognized expert in developing algorithms in all areas of image analysis and processing. In the planned Phase-II, we will use the algorithm developed in the Phase-I program and incorporate it into a user-friendly and marketable digital otoscope-software platform that can be used at the point-of-care by clinicians to improve the care of children with this frequently occurring condition. This will be followed by a clinical trial evaluating its immediate impact on clinical care, and, in particular, utilization of antimicrobials. Our main goal will be to develop an accurate automated algorithm for classifying the three diagnostic categories (AOM/OME/NOE). We aim to achieve an overall accuracy of 95 percent by applying a newly developed classification algorithm. This will include applying state-of-the-art classification methods as well as segmentation algorithms, for automated, robust diagnosis and classification of the three diagnostic categories (AOM/OME/NOE). We propose to achieve this through the following two specific aims: Specific Aim 1: Develop a robust and accurate diagnostic algorithm that can discriminate TM digital images into 1of 3 stringent diagnostic categories (AOM/OME/NOE). Specific Aim 2: Validate the algorithm on a dataset that includes over 2000 TM images collected in a recently completed NIAID-sponsored clinical trial. PUBLIC HEALTH RELEVANCE: AOM is the most common infection for which antimicrobial agents are prescribed in children in the US. By age seven, 93 percent of children will have experienced one or more episodes of otitis media. AOM results in significant social burden and indirect costs due to time lost from school and work. Estimated direct costs of AOM in 1995 were 1.96 billion and indirect costs were estimated to be 1.02 billion, with a total of 20 million prescriptions for antimicrobials related to otitis media. Developing an automated and accurate software tool to help classify otitis media images into one of three stringent clinical categories would have a great impact on both clinical care as well as reducing the unnecessary prescriptions of antibiotics in the US.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government