You are here

Prime Power System Development for Active Denial Technology (ADT) and High-Power Radio-Frequency (RF) Systems


OBJECTIVE: Development of a small, light-weight, prime power system for Directed Energy Weapons (DEW) capable of producing large amounts of power in very short but numerous timeframes. DESCRIPTION: As solid-state RF and millimeter wave (mm-wave) sources continue to revolutionize weapon systems while meeting Army, Navy, Marine, Air Force and Coast Guard requirements, there is a growing need for an innovative, compact, light-weight prime power system for high-power mm-wave generation and RF sources. Solid state sources are of a particular interest due to the potentially superior reliability, maintainability, compactness, weight, versatility, and ruggedness characteristics. Solid-state Active Denial Technology (ADT), high-power, RF systems are relevant to the Joint Non-Lethal Weapons Program because of the desire for advanced, compact, mm-wave sources having a high conversion efficiency of electrical energy to 95 GHz energy. This topic seeks to explore innovate approaches to the development of a small, light-weight, prime power system which is required for integration with small, compact: (1) solid-state ADT sources and (2) mobile, high-power microwave, RF systems. Currently, this technology is not available and is considered a limiting factor in producing a compact and mobile ADT or RF system. Power systems for DEWs can be quite different from continuous AC/DC power generators or sources in that DEWs commonly need large amounts of power but in only very short, but numerous, timeframes. Notional examples of prime power systems that could potentially be applicable include, but are not limited to, load-following diesel and gasoline-powered conventional motor generator sets, rotating storage machines such as pulsed alternators that include flywheel-type energy storage elements, and turbine generator sets powered by distillate fuels similar to aviation jet fuel. An example load versus time profile for a non-lethal directed energy system would be 100% load for 5 minutes and 25% load for 55 minutes each hour. Of interest are proposed power system concepts capable of achieving the following performance metrics: Average power output: 150 kW to 250 kW Fuel type: JP8 Fuel Fuel Efficiency: 210 kW/kg Operating temperature range: -50 degrees C to +50 degrees C Total Weight should be<500 lbs (threshold),<250 lbs (objective) Output voltage: 345 VDC +/- 10% Output of 36,000 W/ft3 of size volume Output of 400 W/lb of system weight Efficiency: 96% efficient generator head (defined as: Generator Head is the part of the generator that produces the electrical output from the mechanical input supplied by the engine. It contains an assembly of stationary and moving parts encased in housing. The components work together to cause relative movement between the magnetic and electric fields, which in turn generates electricity.) PHASE I: Identify potential approaches to develop a load-following DEW power system capable of producing large amounts of power in very short but numerous timeframes. Perform feasibility studies to determine the extent to which the potential approaches meet the ADT and RF system power requirements as defined above. Proposed concepts should include specific power density in watts per pound, architecture tradeoffs to minimize volume, and average power capability calculations. Provide a Phase II development plan with performance goals and key technical milestones, and that will address technical risk reduction. PHASE II: Based upon the result of Phase I and the Phase II development plan, develop a working prototype of the selected concept. Finalize the design or designs of the prime power system and system trade-offs. Develop the prototype prime power design for the integrated systems, including materials specification, fabrication approach, and performance prediction modeling. The company will prepare a Phase III development plan to transition the technology to use. PHASE III: The company will be expected to support the Joint Non-Lethal Weapons Program Office in transitioning the technology for military use. The company, working with the JNLW Program, will continue to develop the technology and will utilize a method for verifying the prototype prime power system performance through testing. The company will also be expected to support the JNLW Program for test and validation to certify and qualify the system for military use. PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: This technology could be used by any branch of the military or by civilian forces as a subsystem required for a reduced size, highly mobile power supply. REFERENCES: 1. JOINT NON-LETHAL EFFECTS CAPABILITIES-BASED ASSESSMENT REFERENCE SHEET, December 2010.
US Flag An Official Website of the United States Government