You are here

Advanced Littoral Combat Ship Common Mission Module Handling Device


OBJECTIVE: The Navy seeks innovation to develop a shipboard module handling device compatible with Littoral Combat Ship (LCS) Mission Modules and common to all LCS configurations. DESCRIPTION: Navy Littoral Combat Ships (LCS) are lightweight high-speed vessels designed to perform a variety of missions, currently including Mine Countermeasures (MCM), Surface Warfare (SUW), and Anti-submarine Warfare (ASW). Reference (1), slide 4, provides a graphic representation of the following description of LCS Mission Packages and Mission Modules. An LCS Mission Packages (MP) is designed to execute a specific ship mission, such as MCM. A Mission Package includes multiple Mission Modules that, together, constitute the equipment necessary to perform the specific mission. All Mission Packages consist of several support Modules that are International Organization for Standards (ISO) twenty-foot equivalent unit (TEU) containers or flat racks, ISO bases without walls or top. A Mission Package can also consist of off-board air vehicles; and the Navy is seeking innovation to develop an advanced mission module handling device for LCS seaframes to move off-board underwater or surface sea vehicle modules when they are onboard the LCS seaframes Mission Modules are brought on board an LCS seaframe prior to deployment to equip the ship for a specific mission. The handling and movement of modules on a seaframe can occur both in port and at sea. Safe, efficient, and timely movement of Mission Modules is critical to mission objectives. Current LCS Seaframes use three types of equipment to move off-board sea vehicles and to support Mission Modules shipboard, with no commonality between the two seaframe designs (Freedom and Independence variants). The current equipment, selected to be compatible with specific seaframe designs and features, are corner casters, used on the Freedom variant; overhead gantry crane, used on the Freedom variant; and straddle carrier, used on the Independence variant. These technologies do not provide a Module handling system common to both seaframe variants and adaptable to handling a variety of Modules. In addition, each of these pieces of equipment has limitations that bear on its usefulness to handle modules. The limitations are in areas such as omni-directionality of movement, side and height clearances, and deck-point loading. Reference 2 identifies similar limitations in deck point loading and omni-directional capability for Navy-wide cargo movement on board ship, indicating that the desired device potentially has application beyond the LCS and that no commercially available device is presently available. Reference 3 shows the three pieces of current Mission Module handling equipment and their applications and limitations. The reference also contains additional information on the development of an advanced Module handling system solicited by this topic. Supporting three separate systems that perform essentially one function is not cost effective. The use of multiple types of Mission Module handling equipment increases crew training requirements and logistic support costs and contributes to overall ship weight. Meeting weight requirements is a significant challenge for LCS seaframes. Moreover, the variety establishes each piece of equipment as a critical failure point since there is no redundancy. If a piece of equipment fails, Modules cannot be moved. A single, versatile Module handling device common to both seaframes could replace the current equipment. A seaframe either could carry two devices or, if developed to be easily and quickly repaired, a store of spare parts. The Navy seeks innovation for an affordable, easily maintained, lightweight Mission Module handling device that can be used, with minimal staffing, on either seaframe variant to perform the functions described in the next paragraph, which are presently handled by the three pieces of equipment. Reference 3 provides the desired objectives for the device. Reference 4 provides the current requirements for Module handling which can be used for information. However, the design of the desired device should not be restricted by these requirements. In port, the device will move Modules into place on an LCS once they are loaded on the ship. At sea, the device will move Modules into position so they can accomplish their mission and move them back into place when the mission is completed. At-sea handling presently applies to offboard sea vehicles, which must be moved into position to be launched and moved back to their lock-down positions after retrieval. (Launch and retrieval capabilities are not within the scope of the desired device, and proposals for such equipment will not be considered under this topic.) ISO support Modules are currently not moved at sea. For both seaframe variants, the deck interface to lock both off-board sea vehicle Modules and ISO support Modules into place is designed to ISO twist-lock standards. This common deck interface provides a good basis for a common handling device. The device should be compatible with commercial ISO architecture and meet applicable Navy shipboard material requirements; for example, shock, environmental, and fire requirements. Innovation is needed to develop a remotely controlled, lightweight, affordable device capable of omni-directional movement of a Module, of spreading load across the deck while maintaining load security in sea-states, within the constraints imposed by competing requirements for module clearances, deck load, maneuverability, size and weight, and manning. The design should allow for the handling of a variety of shapes weighing up to 12,500 kg accounting for future Modules as yet unspecified. PHASE I: The company will develop a concept for an advanced Mission Module handling device common to both LCS seaframes. The company will demonstrate the feasibility of the concept in meeting Navy needs and will establish that the proposed handling device can be feasibly developed into a cost effective, useful product for the Navy. Feasibility will be established by analytical modeling, establishing the suitability of the materials proposed for ultimate fabrication of the device, and cost analysis. The small business will provide a Phase II development plan that addresses technical risk reduction and provides performance goals and key technical milestones. PHASE II: Based on the results of Phase I and the Phase II development plan, the small business will develop a prototype Mission Module handling device for evaluation. The prototype will be evaluated to determine its capability in meeting the performance goals defined in Phase II development plan and the Navy objectives for the handling device. System performance will be demonstrated through prototype evaluation in scenarios based on actual shipboard configurations and using equipment representative of full or near full scale Mission Modules. In addition, analytical methods maybe used to extrapolate performance across entire range of operating parameters. Evaluation results will be used to refine the prototype into an initial design that will meet Navy requirements. The company will prepare a Phase III development plan to transition the technology to Navy use. PHASE III: The company will be expected to support the Navy in transitioning the technology for Navy use. The company will develop a Mission Module handling device according to the Phase III development plan for evaluation to determine its effectiveness in an operationally relevant environment. The company will support the Navy for test and validation to certify and qualify the system for Navy use. PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: The Mission Module handling device would have applicability in the commercial shipping industry, due to its lightweight and compatibility with ISO commercial standards, which would facilitate handling of ISO containers in austere locations. In terms of other potential markets beyond the Navy, it should be applicable to other Department of Defense organizations such as the Army and Marine Corps that use ISO containers in austere locations. REFERENCES: 1. Whitfield, Cecil; Volkert, Richard; Jackson, Carly."Navy Warfare Centers as Lead System Integrators: Lessons Learned from Mission Module Development."13th Annual NDIA Systems Engineering Conference, 27 October 2010.2."Technology Roadmap Meeting the Shipboard Internal Cargo Movement Challenge Consensus Recommendations of the U.S. Shipbuilding Industry."National Shipbuilding Research Program. NSRP Report #AMT-RG01112-4001. Sections 5.1.15 and 5.1.19. January, 2004. Accessed 5 October 2012.3."Information Applicable to the Development of Advanced Littoral Combat Ship Mission Module Handling Device."(Document to be provided on SITIS after Solicitation pre-release.) 4."Overview of Interface Control Document (ICD) for Littoral Combat Ship (LCS) Flight Zero Reconfigurable Mission Systems,"11 May 2006. (Document to be provided on SITIS after Solicitation pre-release.)
US Flag An Official Website of the United States Government