You are here

Design Automation Software for Integrated Nanophotonics


OBJECTIVE: Develop and validate next generation system-on-chip electronic-photonic system simulation tools. DESCRIPTION: Today, the military and commercial application spaces for silicon photonics are expanding very rapidly. The first wave of commercial products are aimed at the telecommunications and data communications spaces, but applications in biosensing, analog data processing, coherent systems, laser ranging, and many other areas are rapidly emerging. One of the central pillars of the electronics industry is the electronic design automation infrastructure. A wide range of very sophisticated software is available for modeling electronic circuits. This ranges from TCAD, which is used to design the actual transistors, to SPICE, which is used to design analog circuits and elements, up to a wide variety of digital tools at the circuit and system level. These tools are crucial for managing the complexity of electronic circuit designs, and they enable IP reuse and rapid design iteration, while radically reducing experimental and test risk. By contrast, the simulation tools for photonics and more specifically, silicon photonics, are extremely primitive. FDTD and finite element tools are adequate for device design, and have become quite mature. The tools from the TCAD world are quite adequate for modeling active devices like modulators and photodetectors. But the higher-level, system-oriented tools are extremely immature compared to what is available in electronics. There is a substantial opportunity for new approaches to this problem. Of particular interest are approaches that meet the following key requirements: (1) Close, seamless integration between standard electronic design automation environments and optical device simulation; (2) Hierarchical abstraction into compact models of the key device physics; (3) Design-for-test integration; (4) Ability to easily change the tradeoff between the level of physical detail being modeled and the speed of the simulation; (5) Ability to simulate in both frequency (small-signal) and time domains (large signal); and (6) Use or development of associated model definition standards Design kits for photonic integrated circuits already exist and are available from various foundries. Proposers are required to make use of existing design kits, supporting at a minimum high speed (20G or above) modulators, detectors and waveguides. Integration with electronic RFIC PDK's is desirable. PHASE I: Develop and demonstrate plausibility of an approach to simulating complex silicon electronic-photonic systems through a compact-modeling approach, integrated with existing EDA tools. Develop designs for an analog or RF (not purely digital) verification circuit. PHASE II: Fabricate the circuit developed in phase I, and test it to validate the tool flow developed in phase 1. Share the full details of this design with the wider community as a tutorial, including the full details of the design flow and the design itself. PHASE III: Use the developed tools to demonstrate high performance components for RF signal processing, radar, imaging systems and/or high speed communications. PRIVATE SECTOR COMMERCIAL POTENTIAL/DUAL-USE APPLICATIONS: Military application: Military applications include RF signal processing, radar, imaging systems and high speed communications. Commercial applications: High performance computing, telecommunications, networking, data processing.
US Flag An Official Website of the United States Government