Description:
Nitrous oxide (N2O) is an important greenhouse gas, resulting primarily from microbial activity in the soil, and is partially regulated by soil chemical and physical properties (for example, soil pH, organic matter availability, soil type, temperature, and moisture). Nitrous oxide emission can be highly variable in both space and time due to nitrogen amendments and other biogeochemical perturbations in soils. As a result, improved, real-time measurements of N2O emission from soils are needed to quantify and eventually model the connection of N2O emissions to environmental conditions. Current methods are inadequate and often require gas samples to be collected manually and analyzed in a laboratory, thus integrating over heterogeneous environmental conditions and potentially introducing sampling bias and limiting the number of samples collected from the field (References 17 and 18).
Grant applications are sought for technology innovation to provide high resolution, real-time measurements of nitrous oxide gas emissions from soils. Instrument platforms should be durable and withstand typical field deployment. Gas sampling should be reliable, with repeatable measurement precision of 0.01 to 0.2 ppb at least every 60 seconds. For chamber-based measurements of N2O emissions, the technology should have a response time faster than 1 second. For eddy covariance measurements of N2O emissions, the technology should have a response time faster than 0.1 second. Technologies that utilize trapping-based approaches will not be considered.