Description:
The DOE supports research and development in a wide range of technologies essential to experiments in High Energy Physics (HEP) and to the accelerators at DOE high energy accelerator laboratories. The development of advanced technologies for particle detection and identification for use in HEP experiments or particle accelerators is desired. Broadly, the areas of interest are improvements in the sensitivity, robustness, and cost effectiveness of particle detectors. Principal areas of interest include particle detectors based on new techniques and technological developments, or detectors that can be used in novel ways as a consequence of associated technological developments in electronics (e.g., sensitivity or bandwidth). Also of interest are novel experimental systems that use new detectors, or use old ones in new ways, with significant improvement in performance, to extend basic HEP experimental research capabilities or result in less costly and less complex apparatus. Devices which exhibit insensitivity to very high radiation levels have recently become extremely important. Grant applications must clearly and specifically indicate their particular relevance to HEP programmatic activities.
Although particle physics detector development is often concentrated at major national particle accelerator centers, there are many developmental endeavors, especially in collaborative efforts, where small businesses can make creative and innovative contributions that further develop the required advanced technologies. Applicants are encouraged to collaborate with active high energy elementary particle physicists at universities or national laboratories to establish mutually beneficial goals.
Proposed devices must be explicitly related to future high-energy physics experiments, either accelerator or non-accelerator based, or to future uses in particle accelerators. Relevant potential improvements over existing devices and techniques must be discussed explicitly. Areas of possible improvement include radiation hardness, energy, position, and timing resolution, sensitivity, rate capability, stability, dynamic range, durability, compactness, cost, etc.