Description:
OBJECTIVE: Develop and demonstrate innovative and advanced concepts for seat restraint systems, which will be intuitively easier and faster to use under any adverse conditions and can be readily integrated into existing forward, aft, and side-facing troop seats in military rotorcraft while providing the necessary protection requirements to prevent injuries during crash. DESCRIPTION: Unlike a pilot who uses the seat restraint system so frequently that its use becomes a matter of habit, troops encumbered with varying types and quantities of equipment in military rotorcraft are often not familiar with the troop seat restraint systems. As a result, they may not use the restraint systems or don them incorrectly especially under adverse conditions like under enemy fire or in the dark. However, it is crucial for the troops and passengers to don the restraint systems quickly and properly in their troop seats to prevent injuries during crash. It has been reported that current 4-point and 5-point seat restraint systems are so difficult for troops to use that in many cases, the crew chief must assist troops in finding the straps and donning them properly. This difficulty results from lack of familiarity, equipment worn by the troop, which blocks visibility, system complexity, and straps that get misplaced down between or behind troop seats. PHASE I: Develop innovative conceptual designs for seat restraint systems for troops in military rotorcraft, which will be intuitively easier and faster to use while providing the required protection to prevent injuries during crash and meeting the ingress and egress requirements. Required Phase I deliverables include monthly progress reports and a final technical report. PHASE II: Upon successful completion of Phase I effort, conduct detail design, analysis, testing to demonstrate operational prototype improved restraint systems that can be easily integrated into existing forward, aft, and side-facing troop seats. Required Phase II deliverables include bi-monthly progress reports, test plans, test reports, design review packages, and a final technical report. PHASE III: Optimize the design and the seat integration resulting from Phase II effort and conduct necessary performance, environmental, user-acceptance testing in an operational environment. The innovative and advanced seat restraint systems for troops in Army rotorcraft can be applied to troop seats for other military platforms as well as the mine-blast protected seats in military and commercial ground vehicles.