Description:
OBJECTIVE: Develop a portable closed loop burn resuscitation system to improve treatment for serious burn patients. The resuscitation system will provide optimized fluid therapy for a patient based on patient attributes as well as patient response to therapy. The final system will automate many traditional caregiver tasks so that a medic could operate the system with similar care results. The final system will also communicate complete resuscitation data to a central location. DESCRIPTION: Burns represent 5% of overall casualties, but 10% of potentially survivable deaths. Severely burned patients require significant intravenous resuscitation, often requiring 20 liters within a 24 hour period. Burn fluid therapy carries the risk of severe complications or mortality resulting from under-resuscitation (end stage organ failure) or over-resuscitation (abdominal compartment syndrome). Fluid therapy requires adjustment at least hourly as the burn pathophysiology morphs during the resuscitation phase. Casualty evacuations (CASEVACs) are also performed over multiple hours and caregivers available in the deployed setting often have limited training for and experience of burn care. The result is that many patients who arrive at definitive care facilities are often over- or under- resuscitated. Clinical care tasks that involve significant cognitive workload, such as calculating an optimal fluid resuscitation dose hourly, are prone to mistakes and subsequent patient harm. Labor intensive workload tasks also reduce the ability of a caregiver to provide adequate care to multiple patients simultaneously and makes logistical placement of highly trained personnel difficult. The primary performance goal is to increase the average length of time when the medic needs to perform a technical or care task with the casualty. Current approaches utilize patient urinary output response as the primary feedback mechanism for adjusting fluid infusion rates; however, urine output is not as useful or is not present in patients with renal failure, high bladder pressure or other physiological complications. Patients do not always respond to crystalloid therapy. A patient may need a secondary therapy, such as albumin or pressors, as an adjunct therapy. The decision of when to begin adjunct therapy and at what dosage is complex and difficult to optimize by guidelines or paper protocols. Detailed records of the resuscitation process, including how much of each fluid was given, and when, are often lost in the CASEVAC process. Multiple hand-offs from the forward surgical team to the combat support hospital to the critical care air transport to definitive care facilities results in lost records or missing data. It is important to not only retain the data, but to display the data graphically and easily communicate the data to a central location. A resuscitation system that optimizes and automates fluid therapy, includes an adjunct therapy for non-responders, includes a second patient response mechanism, and that keeps and exports a complete record of the resuscitation process during CASEVAC will be of great value in improving treatment for severely burned military personnel. PHASE I: Develop and demonstrate a prototype portable burn resuscitation system which incorporates a least a urine monitoring device and an infusion pump. Conceptualize approaches to automating caregiver cognitive and physical tasks, including approaches to optimizing crystalloid resuscitation based on patient responses, to adjunct therapy decisions and manual tasks. The contractor will conceptualize a graphical display that shows input variables and therapy settings in a meaningful way to caregivers. The contractor will identify a method for communicating data to a central location. The contractor will identify clinical and technological issues that would require fully-automated care to disengage and require medic intervention. The contractor will create a plan to test or simulate each issue to gather data on the Mean Time Before Disengaging (MTBD) from fully-automated mode. Furthermore, the contractor will identify a method for determining the MTBD of the system as a whole based on the MTBD data of the individual issues. PHASE II: The contractor will further develop the burn resuscitation system. The contractor will implement the best approaches from Phase I into hardware and software that optimizes and automates crystalloid resuscitation based on patient responses, provides an adjunct therapy, displays graphically the patient response variables and therapy settings and reduces other cognitive and manual caregiver tasks. The contractor will demonstrate data export into a central location. Based on the MTBD plans created in Phase I, the contractor will perform tests and simulation studies and provide data on MTBD for each clinical and technical issue, and then calculate the system MTBD. The performance goal will be an average MTBD of 45 minutes or longer for individual issues and a system MTBD of 20 minutes or longer. PHASE III: The contractor will validate and produce a working portable burn resuscitation system that optimizes and automates crystalloid fluid resuscitation based on patient responses, will provide a therapy adjunct to crystalloid resuscitation, will graphically display patient responses and therapies over the resuscitation phase and will communicate data to a central location. The burn resuscitation system will have a MTBD of 20 minutes or longer. The final burn resuscitation system will optimize fluid therapy for patients, will identify and provide a second therapy for patients when crystalloid resuscitation is not adequately effective, and, importantly, will automate care with the primary goal of reducing required frequency of caregiver interactions with the patient. Such a system will optimize care, will enable lesser trained caregivers to provide adequate care of patients, and will enable caregivers to effectively take care of more patients simultaneously. Such a system should save lives, improve the quality of life for military and civilian patients, improve the CASEVAC process and should be of great commercial interest for all branches of the U.S. armed services and civilian burn care professionals. Validation of the system will be performed in accordance with FDA regulation related to development and validation of a closed loop medical device. The contractor will submit the developed system for FDA clearance for eventual use in a clinical environment.