You are here

Real-Time and Simplified Sensors to Support Mobile Wastewater Treatment

Description:

OBJECTIVE: Develop a real-time in-line diagnostic tool to provide simple and timely verification that treated water is safe to discharge DESCRIPTION: This SBIR topic will deliver technology that the Army can integrate into its future wastewater treatment concept of operations. The Army is developing mobile wastewater treatment systems to provide tactical base commanders more organic logistics support. This will reduce their need for wastewater convoys. The limited manpower at small bases will not include wastewater specialists, so operators must be enabled with simple, effective methods to verify the wastewater treatment process and to ensure that the treated water is safe to discharge. Essential process verification measurements relating to the nutrient content of the water can neither be done on-site nor in frequent intervals. This means that the operators are lacking key information to adjust or correct wastewater treatment system operations to avoid pollution. There are a variety of measurement options that satisfy wastewater discharge permit requirements and parameters of interest include (but are not limited to): chemical oxygen demand, biological oxygen demand, total organic carbon, and coliform bacteria. As a worst case, the standard method to measure biological oxygen demand (BOD5) takes 5 days and so some quicker measurement methods will likely be predictive. As an innovative effort, this request is NOT looking for proposals that integrate various commercial items with minor modifications to meet the above requirements. The proposals should identify cutting edge research that allows for the consolidation of the wastewater treatment verification parameters on a single platform such as a chip that will also overcome the limitations of the current commercial methods towards real-time process verification for quickly emplaced treatment systems. The effort should focus on primarily on the development of sensors rather than data loggers, controls or communications. Ideally, prototypes delivered to the Army would be used to demonstrate capability to monitor wastewater discharge during Army technology demonstrations (TECD4a) for small base support from 2016 to 2017. PHASE I: Demonstrate feasibility of core technology in a laboratory setting. Verify measurement range or sensitivity equivalent to commercially available equipment currently used by the water industry. Verify accuracy by comparing the results to analysis conducted using the appropriate reference method from the current edition of Standard Methods for the Examination of Water and Wastewater. Directly measured physical and chemical properties should have an accuracy within 10%. Each parameter shall be tested in standard preparations and then selected tap water mixtures. PHASE II: Design, build a complete sensor prototype for multiple wastewater analytes housed within a single platform no larger than one cubic foot. The sensor should be capable of communication with a device (internal or external, preferably commonly available) to log data. Test integrated prototypes to the criteria of phase I with standard preparations and collected water. Delivered prototype must be suitable for 3rd party and Army laboratory testing and field demonstration, but design does not need to be finalized, nor is military standard durability required. Clear operational manuals do not require military format. During this phase, the Army expects to work closely to clarify mission integration requirements appropriate for the initial prototype maturity. PHASE III: Final solution is a quick-connect autonomous inline system but a kit that accepts batch samples may be suitable. The sensor platform should be self-calibrating with duration of at least one month before recalibration is needed. The most supportable design would utilize commonly available supplies, common communication protocols and not directly interface with the controls of the wastewater treatment system. The Army can integrate the technology developed under this SBIR into the mobile wastewater treatment systems being developed to answer Acquisition requirements. Water utilities could insert the technology developed under this SBIR in facilities to improve maintenance and reduce contamination of our nation"s waterways. Broader application may be for monitoring in accordance with discharge permits for industrial and municipal facilities.
US Flag An Official Website of the United States Government