Description:
OBJECTIVE: Develop and demonstrate a model or full sized high energy density capacitor for microsecond discharge times operating at high voltages with an energy density greater than or equal to 1.2 Joules per cubic centimeter (J/cc). DESCRIPTION: The Army is in need of pulse power components that dramatically reduce weight and volume, while meeting the high voltage needs of a pulse forming network. Recent advances in the production and performance of current capacitors for the US Army have achieved many milestones; however there is only one known US vendor able to produce a high energy density capacitor. The topic goals are to develop another source that has the ability to produce a high energy density capacitor. In order to meet this goal, an innovative approach is desired to meet the required discharge life, energy density, and pulse widths. PHASE I: In Phase I, deliver a study that demonstrates novel methods of producing a high energy density pulse forming network capacitor. The capacitor should be optimized for DC lifetime with the goal of achieving the highest energy density possible while maintaining a discharge life of 10 events; discharge times are in the microsecond pulse widths. This study shall include modeling that allows the contractor to demonstrate the capabilities of the high energy density capacitor. PHASE II: Upon successful completion of Phase I, design and fabricate a high energy density capacitor suitable for a high voltage (3 kilo-Volt (kV) to 7kV range) pulse forming networks. Energy density should meet or exceed 1.2Joules/cubic centimeter (J/cc). Contractors are encouraged to collaborate with the Army on minimizing the packaging designs and reducing weight and volume. A working prototype should also be submitted to Army for evaluation. PHASE III: in phase III, the contractor shall design and fabricate a high energy density capacitor suitable for a high voltage (above 7kV) pulse forming networks, based on improvements from phase II. Energy density should meet or exceed 1.3J/cc. Minimum DC lifetime of 1000 hours and 10 discharge events.