Description:
OBJECTIVE: With recent advancements in digital processing technology, there exists the capability to develop an all digital radar. The purpose of this topic is to solicit research and development of an all digital transmit/receive module and a radar back end capable of processing resulting large data sets. This design should have the potential of growing into a final software and hardware design leading to a demonstration on actual hardware. DESCRIPTION: Conventional radar receivers are constructed with analog components. Only the demodulated baseband signal is converted (at the sub-array level) to digital format using a medium speed analog-to-digital converter (ADC). Since analog components are sensitive to temperature, supply voltage and semiconductor processing variations, the performance of analog radar receiver is limited and power hungry. With the development of digital processing technology, there are emerging trends toward digitization in radar receiver designs by applying direct intermediate frequency-to-digital conversion (IF sampling) and a direct digital synthesizer (DDS) at the transmit/receive (T/R) module. Digitization at the T/R module allows for much higher precision, lower noise, lower power and stability than analog counterparts. Moreover, it can retain the extreme flexibility of digital techniques such as direct digital modulations and waveform generation. In order to obtain high resolution and high anti-jam features, modern radar systems need to employ more complex waveforms; however, with analog radar receivers it is difficult to generate and process arbitrary waveforms. The All-Digital Radar (ADR) is a revolutionary approach to the development of modern radars capable of supporting the required functions within DOD, as well as a variety of potential commercial applications. Digitization at the T/R module supports the concept of one design for all radars. The ADR is scalable and provides total flexibility for needs that range from the smallest applications involving the protection of a small number of troops up to and including cruise missile defense and large space-based ballistic applications. The T/R module can be implemented in an integrated chip; hence it consumes much less power and is much lighter and more efficient than its conventional analog counterparts. The small size, light weight and low power greatly increase the applicability force protection and communication. Two issues have limited the development of the ADR technology: Processing the data from the ADR array (each T/R module has the data bandwidth of conventional radar) and low power ADC. Solutions to these two issues are available with today"s technology. The intent of this effort is to develop ADR hardware and a digital signal processing back end and perform analysis of improvements to functionality and cost for radars and communication system capabilities. Follow-on efforts will build and test a prototype ADR array. PHASE I: The offeror shall develop a design of an all-digital T/R module and the signal/data processing backend to aggregate, distribute and process data from a T/R module array. The minimum bandwidth of the module shall be 1 GHz. The T/R module shall include a DDS and an ADC. The DDS shall be capable of generating frequency and phase modulated signals. The ADC shall be low power (<2 watts). PHASE II: The offeror shall develop a 4 module ADR array and demonstrate signal generation, data aggregation, distribution and signal processing. The offeror shall provide complete designs of the T/R module along with the digital hardware and radar backend architectures for a 64 T/R module array. PHASE III: The offeror shall build and demonstrate a 64 module ADR array and digital hardware backend. The most likely transition of ADR technology is to systems that require low energy consumption in performing their mission. This would include UAS vehicles which are a candidate for all ADR T/R modules integrated into the airframes. Also satellite based radar and communications systems require low power consumption systems. ADR technology energy efficiency, flexibility in design, waveform diversity, common backend, and cost should lead to its adaptation in all future DoD radar designs. Commercial applications include the communications industry (telephone and video communications). Also, low cost applications such as radars to track aircraft on the ground at airports and surveillance systems for commercial buildings.