You are here

Single Cell chemical Imaging via nanoscale IR ablation - Mass Spectromety

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R41GM106454-01
Agency Tracking Number: R41GM106454
Amount: $151,627.00
Phase: Phase I
Program: STTR
Solicitation Topic Code: NIGMS
Solicitation Number: PA12-089
Solicitation Year: 2013
Award Year: 2013
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
United States
DUNS: 556921620
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 (225) 578-3417
Business Contact
Phone: (805) 455-5482
Research Institution
United States

 () -
 Nonprofit College or University

DESCRIPTION (provided by applicant): The goals of this project are twofold: a) to develop a new technique for nanoscale Mass spectrometry imaging based on AFM based tip enhanced IR ablation (nanoIR-MS). b) to apply this technique towards the application ofSingle cell imaging. Information on the chemical composition within a cell has implications in the understanding of cell metabolism, division, disease states, ecological effects etc. Given current technology limitations, most current analyses of biological systems are performed on groups of cells with the assumption that an ensemble average from the group will yield a useful result. However, this typically is not a valid assumption as cells of the same type exhibit diverse metabolic makeup depending on their phase in the cycle, history and interaction with the environment. Thus it is important that cells be analyzed individually in order to detect rare cells (e.g. circulating tumor cells), transient cell states, the influence of the cell environment on cells and states and aid in the understanding of differences in gene expression, protein levels, and small- molecule distributions at the single cell level. Cell heterogeneity is particularly significant in the -omis fields such as genomics, proteomics, lipidomics, and metabolomics that characterize biological systems at a molecular level. This significance led to the NIH launching a special focus program on Single cell Analysis Tools in late 2011. The size of mammalian cells is on the order of 10 m and therefore the imaging of single cells requires imaging spatial resolution of at least 1 m. The nanoIR-MS technology has a potential spatial resolution of at least 10x better than this or 100 nm which offers the possibility of the imaging of biomolecules in organelles. But to achieve an innovative and commercially successful product from this proposal, 1 m spatial resolution would suffice. One of the Specific Aims of this proposal is to demonstrate that the nanoIR-MS technique can be applied for Single Cell Imaging. We will demonstrate this on two types of Single cells: Cells from Mouse brain and also to identify single Circulating Tumor cells (CTCs). As reiterated in our Letter of Support from our collaborator, Prof. Yeh who is an Oncology research surgeon, CTCs are the fundamental entities primarily responsible for spawning metastatic disease and there is a current lack of characterization technologies to identify them . To cure epithelial-based cancers-such as cancers of the breast, prostate, lung, colon andpancreas-therapies need to be directed towards those cells that cause metastases. However, the majority of metastatic lesions are never biopsied due to anatomic inaccessibility or associated morbidity of the procedure. CTCs offer a readily accessible means of studying the biology of metastatic cells throughout the course of disease and are often referred to as 'Liquid Biopsy'. PUBLIC HEALTH RELEVANCE PUBLIC HEALTH RELEVANCE: The goals of this project are twofold: a) to develop a new technique for nanoscale Mass spectrometry imaging based on AFM based tip enhanced IR ablation (nanoIR-MS). b) To apply this technique towards the application of Single cell imaging. We will demonstrate the application of this platform technology on single mouse braincells and to identify single cells of Circulatory Tumor cells.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government