You are here

A user-friendly scalable microfluidic platform for enhanced neuron-cell culture

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R41MH097377-01A1
Agency Tracking Number: R41MH097377
Amount: $678,765.00
Phase: Phase I
Program: STTR
Solicitation Topic Code: NIMH
Solicitation Number: PA12-089
Solicitation Year: 2013
Award Year: 2013
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
TEMECULA, CA 92590-2535
United States
DUNS: 26927928
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 (919) 843-8156
Business Contact
Phone: (626) 228-8682
Research Institution
UNIVERSITY OF NORTH CAROLINA CHAPEL HILL Office of Sponsored Research 104 Airport Drive CB#1350
United States

 () -
 Nonprofit College or University

DESCRIPTION (provided by applicant): Neuron-cell culture is widely used for studies in basic research, drug discovery, and toxicity testing. Traditional random cultures allow limited access to subcellular compartments (axons, dendrites, synapses) due to extensive and haphazard growth of neurons. Our long-term goal is to provide robust, user-friendly, and cost effective culture platforms that can optically, fluidically, and biochemically access neurons and their subcellular compartments. Data acquired through sales of prototype platforms developed and patented by our team show a large and increasing demand. Customer feedback also indicates that technological improvements would make our platforms more accessible and user-friendly. Such improvements include ensuring greater uniformity of the device, reducing end-user assembly procedures, and enhancing viability for the long-term culturing period that is often needed for neurons. Thus, our first aim focuses on addressing these issues by (1) incorporating cell loading ports into the platform to reduce cell loading errors, (2) improving feature uniformit through the development of high-resolution, durable metal molds, (3) developing methods to reduce evaporative losses that impair neuron viability, (4) increasing the wettability and biocompatibility of the device material through surface modification, and (5) covalently linking extracellular matrix proteins onto glass to minimize end-user assembly. The successful completion of this aim will result in a consistent, cost-effective, and ready-to-use neuron-cell culture platform. Our next aim focuses on the development of novel cell-based tools to study synapses, the cornerstone of neuroscience. There is considerable demand for methods to isolate synapses and there are limitations in existing techniques. In Aim 2 we will develop user-friendly synapse isolation tools, expanding on core technological advancements from Aim 1. Aim 2 will involve (1) development of stable, artificial synaptic bead targets allowing novel investigations of the presynaptic compartment and (2) development of a three-compartment synapse isolation platform that exploits device geometry and synaptic beads to encourage synapse formation within an isolated synaptic compartment. The successful completionof this aim will result in a user-friendly, accessible, and innovative cell-based tool to optically and biochemically probe synapses. The significance of the proposed work is to improve research scientists' ability to visualize, manipulate, and measure cultured neurons leading to greater understanding of the underlying causes of neurological diseases. This research is innovative because we seek to shift current research paradigms through the development of novel cell-based tools to isolate synapses that maintain intact cell morphology in the absence of somata or glia. PUBLIC HEALTH RELEVANCE PUBLIC HEALTH RELEVANCE: The proposed research is relevant to public health because technology developed in this proposal will facilitate investigations of neurological illnesses and injury. The project is relevant to NIH's mission because it will provide a user-friendly and novel tool for cellular neuroscience, advancing the study of neuronal and synaptic function.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government