You are here

Advanced Simulation Capability for Turbopump Cavitation Dynamics Guided by Experimental Validation

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX14CM15P
Agency Tracking Number: 144332
Amount: $122,041.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: H2.03
Solicitation Number: N/A
Timeline
Solicitation Year: 2014
Award Year: 2014
Award Start Date (Proposal Award Date): 2014-06-20
Award End Date (Contract End Date): 2014-12-19
Small Business Information
3221 North West 13th Street, Suite A
Gainesville, FL 32609-2189
United States
DUNS: 090574786
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Siddharth Thakur
 Principal Investigator
 (352) 271-8841
 st@snumerics.com
Business Contact
 Siddharth Thakur
Title: Business Official
Phone: (352) 271-8841
Email: st@snumerics.com
Research Institution
N/A
Abstract

Numerical cavitation modeling capability is critical in the design of liquid rocket engine turbopumps, feed lines, injector manifolds and engine test facilities. Cavitation in turbopumps leads to reduced performance, mechanical vibrations, and component erosion. The Computational Fluid Dynamics (CFD) solver Loci-STREAM–developed by Streamline Numerics–is one of the primary production tools currently used at NASA to simulate turbopumps. With a long term goal of enabling accurate computational modeling of cavitating turbopumps subjected to an array of potential operating conditions, this project is aimed at enhancing the cavitation modeling capability in Loci-STREAM to enable time-accurate simulations involving complex engineering geometries present in turbopumps of relevance to NASA involving cryogenic fluids (LOX, LH2, LCH4, RP-1, RP-2). This will contribute to enhanced performance, reliability and reduced developmental costs of liquid rocket pumps. The project will involve a tightly coupled experimental/computational effort. The experimental simulations will be conducted at the University of Florida in a dedicated experimental facility capable of investigating various cavitation modes covering the entire range of non-cryogenic to cryogenic fluids; the proposed studies will be supported by extensive instrumentation. The cavitation models in Loci-STREAM will be substantively validated via dedicated experimental data directed by the computational and model requirements.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government