You are here

Thermally Efficient Emitter Technology for Advanced Scene/Simulation Capability in Hardware in the Loop Testing

Description:

Ground testing of exo-atmospheric interceptor IR sensors play an essential role in the development of advanced algorithm concepts, mitigating flight test risk/cost and evaluating tactical performance. Numerous next-generation IR emitter technologies such as IR light emitting diodes (LEDs), photonic crystals and resistors are in development. These devices address the need for greater projected temperature ranges, faster frame update rates and very large array formats but present challenges in managing parasitic/waste heat. This solicitation seeks new and innovative emissive technologies to enable presentation of dynamic high-temperature scenes at higher frame rates for high fidelity IR projection in ground test environments to meet the test requirements for larger formats and more stressing tactical environments where thermal management is not a dominating factor. The end result will provide a capability to evaluate exo-atmospheric IR sensors and target tracking/discrimination algorithms in ground test facilities with increasing confidence of success prior to flight test. Technical goals of this topic include: • Pixel scene resolution of 4K x 4K • Frame rates > 400Hz • Flickerless display • Compatible with cryogenic chamber operation (~100K) • MWIR/LWIR scene temperatures of 2000K • Native non-uniformity <10% • Cross-Talk <1% • Dynamic range 16-bits PHASE I: Conduct a feasibility study to identify one or more innovative thermal efficient emitter solutions that meet the temperature/speed goals and show promise to implement in extremely large formats. Emitter to emitter spacing (pitch) must be minimized to avoid area-defect yields and ease optical interfacing challenges. Identify addressing and drive schemes to achieve flickerless display. Use of modeling and simulation to conduct trade studies, optimize efficiency, predict overall performance, and forecast power requirements is essential. Preliminary testing of materials at the “coupon” level to anchor model predictions is desirable. PHASE II: Develop and execute an incremental test & integration plan that will address the technology challenges and produce a prototype/breadboard system for evaluation. Define any technology shortfalls and document the recommendations for resolution and update system level model. PHASE III: Based on Phase II lessons learned, revise the system model to proof-out the new design. Develop and execute an incremental test & integration plan that will produce a final prototype. Demonstrate interface capability via bench test of a government furnished very large format array at cryogenic temperature. Commercialization: The primary market for thermally efficient materials for extremely large infrared projectors will be military and civilian government agencies with applications requiring testing of munition and surveillance sensors.
US Flag An Official Website of the United States Government