You are here

Dynamic ASE Modeling and Optimization of Aircraft with SpaRibs

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX15CD08C
Agency Tracking Number: 140121
Amount: $749,816.00
Phase: Phase II
Program: STTR
Solicitation Topic Code: T4.01
Solicitation Number: N/A
Solicitation Year: 2014
Award Year: 2015
Award Start Date (Proposal Award Date): 2015-05-27
Award End Date (Contract End Date): 2017-05-26
Small Business Information
4020 Long Beach Boulevard
Long Beach, CA 90807-2683
United States
DUNS: 133626544
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 Myles Baker
 Principal Investigator
 (562) 305-3391
Business Contact
 Myles Baker
Title: Business Official
Phone: (562) 305-3391
Research Institution
 Virginia Polytechnic Institute
 Na Ren
300 Turner Street NW
Blacksburg, VA 24061-0001
United States

 (540) 231-4471
 Domestic Nonprofit Research Organization

In aircraft design, reducing structural weight is often a prime objective, while various constraints in multiple disciplines, such as structure, aerodynamics and aeroelasticity should be imposed on the aircraft. Therefore, engineers need optimization tools to incorporate the multidisciplinary constraints using appropriate fidelity during the early stages of concept design. Classic structural design of aircraft structures is based on the concept of a "wing box" that uses simple components such as straight spars and ribs, quadrilateral wing skin panels and straight stiffeners. A new design philosophy, using curvilinear SpaRibs has been introduced based on emerging manufacturing technologies such as Electron Beam Free Form Fabrication and Friction Stir Welding (FSW). In those innovative technologies, the wing structure is manufactured as an integrated part instead of using mechanically fastened structural components. This design approach makes it possible to design curved substructure that is a hybrid between spars and ribs, therefore called "SpaRibs". These can be designed to have favorable coupling between bending and torsion, and can improve the buckling resistance of local panels. The ability to tailor the bend-twist coupling has been shown to offer substantial improvement in aeroelastic behavior without a weight penalty (or alternately, a weight savings without aeroelastic problems). In this program we will advance this technology to a TRL of 5-6 (or to 6-7 in a Phase III) by designing a subsonic transport wing with better aeroelastic and aeroservoelastic performance, and by designing a test article and test program suitable for proving the performance benefits in flight.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government