List

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for the given year is not complete until April of the following year. Annual Reports data is a snapshot of agency reported information for that year and hence might look different from the live data in the Awards Information charts.

  1. Hybrid DNN-based Transfer Learning and CNN-based Supervised Learning for Object Recognition in Multi-modal Infrared Imagery

    SBC: TOYON RESEARCH CORPORATION            Topic: 1

    On this effort Toyon Research Corp. and The Pennsylvania State University are developing deep learning-based algorithms for object recognition and new class discovery in look-down infrared (IR) imagery. Our approach involves the development of a hybrid classifier that exploits both transfer learning and semi-supervised paradigms in order to maintain good generalization accuracy, especially when li ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  2. Algorithms for Look-down Infrared Target Exploitation

    SBC: SIGNATURE RESEARCH INC            Topic: 1

    Signature Research, Inc. (SGR) and Michigan Technological University (MTU) propose a Phase I STTR effort to develop a learning algorithm which exploits the spatio-spectral characteristics inherent within IR imagery and motion imagery.Our archive of modelled and labeled data sets will allow our team to thoroughly capture the variable elements that will drive machine learning performance.The overall ...

    STTR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  3. Satellite Low-Shot Augmented Object Detection (SALSA)

    SBC: Kitware, Inc.            Topic: NGA172002

    The recent widespread use of overhead sensors, and their ability to provide continuous streams of imagery for intelligence, surveillance and reconnaissance (ISR) missions, has generated a critical need for high-fidelity, automated object detection systems. For intelligence analysts, searching large volumes of imagery with vast spatial and temporal extent can be extremely time consuming and tedious ...

    SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  4. Low-Shot Detection in Remote Sensing Imagery

    SBC: TOYON RESEARCH CORPORATION            Topic: NGA172002

    Toyon Research Corporation proposes to research and develop algorithms for low-shot object detection, adapting popular techniques to address the complexities inherent in ATR for remote sensing. Traditional object detection algorithms rely on large corpora of data which may not be available for more exotic targets (such as foreign military assets), and therefore, traditional Convolutional Neural Ne ...

    SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  5. Low-Shot Detection in Remote Sensing Imagery

    SBC: Next Century Corporation            Topic: NGA172002

    Next Century Corporation proposes the development of Muggsy, a low-shot deep learning detection prototype system that learns to recognize uncommon targets in remote imagery. Our Phase I research extends and leverages an image classification system of our own design called EvoDevo. EvoDevo evolves its own neural network architecture before training to meet the complexity of the data. Muggsy uses le ...

    SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  6. GFNet: Gnostic Fields based Low-Shot Learning for Target Detection in Remote Sensing

    SBC: Intelligent Automation, Inc.            Topic: NGA172002

    To detect uncommon targets in remote sensing imagery, it is quite often that very few prior examples are available. This so-called low-shot detection remains a very challenging problem in remote sensing, despite the recent development in state-of-the-art object detection algorithms such as Faster R-CNN and YOLO, and low-shot learning methods such as feature shrinking, model regression and memory a ...

    SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  7. NGAflix: a cloud-based adaptive bitrate video processing and distribution system

    SBC: Kitware, Inc.            Topic: NGA181002

    The large volume of full motion video from unmanned aerial vehicles, along with other data from various sensors creates resource andengineering challenges in managing, processing and distributing that data. Law enforcement and intelligence work require videos in locationsfar from where they were recorded, and need multiple sensor streams to be synchronized for search, filtering, and transformation ...

    SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  8. GEOFF: Geo-location from Edges, Objects, Foundational data, and a Filter

    SBC: Scientific Systems Company Inc.            Topic: NGA181007

    Ground vehicles with navigation capability (e.g., GPS) can index into foundation data (e.g., Google Maps) to gain situational awareness abouttheir surroundings. When GPS and RF navigation sources are degraded, maintaining situational awareness requires an alternative navigationsource. One alternative source is the foundation data itself. The data contain objects at known 3D locations, which projec ...

    SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  9. Variational Object Recognition and Grouping Network

    SBC: Intellisense Systems, Inc.            Topic: NGA181005

    To address the National Geospatial-Intelligence Agency (NGA) need for overhead imagery analysis algorithms that provide uncertaintymeasures for object recognition and aggregation, Intellisense Systems, Inc. (ISS) proposes to develop a new Variational Object Recognition andGrouping Network (VORGNet) system. It is based on the innovation of implementing a Bayesian convolutional neural network (CNN) ...

    SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency
  10. DNC-GD: Deep Neural Network Compression for Geospatial Data

    SBC: Intelligent Automation, Inc.            Topic: NGA181009

    Following technology advances in high-performance computation systems and fast growth of data acquisition, a technical breakthroughnamed Deep Learning made remarkable success in many research areas and applications. Nevertheless, the progress of hardwaredevelopment still falls far behind the upscaling of deep neural network (DNN) models at the software level. NGA seeks to apply neuralnetwork minia ...

    SBIR Phase I 2018 Department of DefenseNational Geospatial-Intelligence Agency

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government