You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Multiple Rectangular Discharge CO2 Laser

    SBC: Qsource, Inc.            Topic: N/A

    An innovative discharge geometry for a very compact, area cooled, high average power CO2 laser employing a two mirror, waveguide-stable optical cavity is proposed. The specific Phase I result sought is the generation of an average CO2 output power of 1 W/cm2 of wall cooling area in a geometry that has a total cooling area of 140 cm2. A lightweight CO2 amplifier version of a future Phase II devic ...

    SBIR Phase II 1997 Department of DefenseMissile Defense Agency
  2. Ferroelectric Capacitors for Pulse Power Electronics

    SBC: Advanced Technologies/Laboratories Intl            Topic: N/A

    HIGH-DENSITY ENERGY STORAGE AND FAST DISCHARGE WILL BE CRITICAL IN A VARIETY OF HIGH POWER AEROSPACE APPLICATIONS. CAPACITORS ARE IDEAL FOR THESE PURPOSES, AS WELL AS FOR POWER CONDITIONING AND FILTERING. UNFORTUNATELY, BULK POWDER-BASED DIELECTRICS USED IN CAPACITORS HAVE SEVERE LIMITATIONS, ESPECIALLY THE HIGH NUMBER OF SHORT-INDUCING DEFECTS CAUSED BY POOR CONTROL OF MATERIAL PROPERTIES IN CERA ...

    SBIR Phase II 1997 Department of DefenseMissile Defense Agency
  3. Development of Novel RAD-Hard ASICs and a Modular Design Methodology Using Asynchronous Architectures

    SBC: NANOMATRONIX LLC            Topic: MDA18007

    The NMT/UA team propose to develop a radiation-hardened, low power, and highly robust delay-insensitive asynchronous circuit design methodology in 90nm technology, prototyped by designing a SET/SEL/SEU immune asynchronous microcontroller test chip (PIC 16C57, for example).The proposed Phase 1 SBIR effort will focus on design, simulation, prototyping and demonstration of the key functional blocks o ...

    SBIR Phase I 2018 Department of DefenseMissile Defense Agency
  4. High toughness SiC and B4C

    SBC: M CUBED TECHNOLOGIES, INC.            Topic: MDA05024

    Reaction bonded (RB) SiC and B4C offer high specific stiffness (modulus/density) comparable to beryllium (Be) and higher thermal stability (thermal conductivity/CTE) than Be. However, these materials have low fracture toughness (4 MPa m1/2 compared to 8-10 for Be) and hence have not been considered viable Be-replacement materials for the MDA systems such as the EKV, ABL, etc. M Cubed has demonstra ...

    SBIR Phase I 2006 Department of DefenseMissile Defense Agency
  5. Fabrication of Angstrom Wide Notch Filters Using Laser Induced Densification.

    SBC: RUGATE TECHNOLOGIES, INC.            Topic: N/A

    A unique method for producing very stable, sub-angstrom wide, reflection notch, and bandpass filters, with high optical rejection is proposed. This method takes advantage of a subtle process observed in vacuum ultra-violet (VUV) lithographic systems using fused silica optics known as, laser induced compaction. Multiple exposures of high power excimer radiation induces very small index of refractio ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  6. Blue-Green LED Arrays for Scanned Linear Array Imaging

    SBC: Advanced Technologies/Laboratories Intl            Topic: N/A

    Virtual displays have tremendous potential in defense applications such as virtual reality training, battlefield support, and information systems. Full color displays require red, blue, and green LED arrays of which only red is commercially available. This program teams ATMI, a recognized leader in the GaN growth community, with Reflection Technology, a leader in virtual display technology. ATMI w ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  7. High Dielectric MOSFET Oxides on SiC

    SBC: Advanced Technologies/Laboratories Intl            Topic: N/A

    Increasing thermal and power loads in circuitry demand electrical components which can operate at temperatures up to 400 C and beyond . A combination of high bandgap semiconductors and improved dielectrics is needed to solve this problem. ATMI has maj or programs in production of both SiC/GaN semiconductor materials and high dielectric constant complex oxide thin films, in particular barium stront ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  8. Edge-emitting Nitride-based Bragg Reflector Lasers

    SBC: Advanced Technologies/Laboratories Intl            Topic: N/A

    In this program we will develop narrow linewidth AlGaN Bragg reflector lasers suitable as injection seeds for solid-state W lasers in the range of 280 to 330 nm. These systems are compact, light weight, and low-power consuming and ideal for airborne lidar systems. Bragg reflector lasers have never been fabricated in the nitrides so in this Phase I program we will develop the technologies necessary ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  9. Solar-blind GaN p-I-n UV Photodiodes

    SBC: Advanced Technologies/Laboratories Intl            Topic: N/A

    Photodiodes have high efficiency since the absorption region thickness is large. However, no GaN p-i-n photodiodes have been reported due to the difficulty in achieving low background doped GaN. This Phase I program seeks to determine the increase in quantum efficiency achievable by the use of a thick intrinsic layer inserted in the p-n junction to increase the absorption region thickness. In addi ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
  10. Epi-ready SiC Substrates

    SBC: Advanced Technologies/Laboratories Intl            Topic: N/A

    Commercially viable silicon carbide device manufacturing processes depend on an ability to grow'low defect density epitaxial layers. Low defect density epitaxial layers start with pristine SiC substrate surfaces. Epi-ready pristine SiC surfaces are not commercially available. The results of this-programme should remedy this. In Phase I we will demonstrate a cost-effective, reproducible ex-situ sur ...

    SBIR Phase I 1997 Department of DefenseMissile Defense Agency
US Flag An Official Website of the United States Government