You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Ultra-stable, Portable Fabry-Perot Cavities

    SBC: Boulder Precision Electro-optics            Topic: SB12A001

    Frequency stabilized lasers are essential subsystems in many applications. Most importantly, they are used as flywheel oscillators in optical atomic clocks, as well as in many sensing and measurement systems, and some examples are down oil well sensing, l

    STTR Phase II 2015 Department of DefenseDefense Advanced Research Projects Agency
  2. Preservation Matrix for Improved Biological Specimen Storage and Recovery

    SBC: LUNA INNOVATIONS INCORPORATED            Topic: ST12B001

    The ability to rapidly detect and identify infectious organisms is critical for the accurate diagnosis of seasonal and sporadic outbreaks, emerging pathogens and agents of bioterrorism. Accurate detection requires high quality biological specimens, which

    STTR Phase II 2015 Department of DefenseDefense Advanced Research Projects Agency
  3. Autonomous Decision Architecture for Robust Understanding of Scenes (ADARUS)

    SBC: DECISIVE ANALYTICS CORPORATION            Topic: ST14B003

    computer vision, robustness, goal-driven autonomy, top-down planning, feedback, value of information, lighting invariance, perspective invariance

    STTR Phase I 2015 Department of DefenseDefense Advanced Research Projects Agency
  4. Advanced Tools for Mammalian Genome Engineering

    SBC: CARRYGENES BIOENGINEERING LLC            Topic: ST13B001

    Recent advances in mammalian artificial chromosome design and engineering offer an alternative to existing methodologies for cellular bioengineering and address unmet needs to bioengineer more complex functionalities into human cells for subsequent commercialization. In this ST13B-001 application we propose to demonstrate utility of a novel chromosome-based gene delivery vehicle that is amenable t ...

    STTR Phase II 2015 Department of DefenseDefense Advanced Research Projects Agency
  5. Micro-sized Microwave Atmospheric Satellite Cluster (MicroMAS)

    SBC: AURORA FLIGHT SCIENCES CORPORATION            Topic: ST092005

    Small satellites working in coordinated manner as part of a distributed constellation hold the promise to revolutionize DoD space operations. However, small satellites also have significant inherent limitations. Their size limits the types of sensors that they can accommodate. It also limits propulsion, power generation and attitude control capabilities. One way of overcoming some of these lim ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
  6. Wide Area Video Motion Blur Elimination

    SBC: ObjectVideo            Topic: ST081007

    This Small Business Technology Transfer Phase-II project will design, develop and integrate an effective and efficient motion blur elimination algorithm to Autonomous Real-time Ground Ubiquitous Surveillance - Imaging System (ARGUS-IS) system by optimizing and implementing the algorithm proposed during the Phase-I investigation to FPGA. In addition, an image enhancement toolkit for ground station ...

    STTR Phase II 2010 Department of DefenseDefense Advanced Research Projects Agency
  7. Novel Methods for Sensor Quieting in Turbulent Flows

    SBC: PROGENY SYSTEMS, LLC            Topic: ST092004

    The Progeny – University of Utah team proposes a new approach for flow noise reduction to improve acoustic sensor performance. Our proposal is to investigate the ability of controlling the turbulent flow by utilizing acceleration which makes the flow locally laminar. Our proposed method of achieving acceleration is to send the flow around a concave surface, by adding a “two-dimensional bump ...

    STTR Phase I 2010 Department of DefenseDefense Advanced Research Projects Agency
US Flag An Official Website of the United States Government