You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Compressive Sampling Video Sensor for Change Detection

    SBC: Inview Technology Corporation            Topic: A12aT007

    InView and its close partner Rice University are world leaders in CS imaging algorithms and CS imaging sensor development. Over the last 8 years, there has been impressive progress on imaging architectures that seek to reduce the amount of data sensed by exploiting signal priors and task-specific imaging. We propose to leverage these latest advances in compressive sensing and computational imaging ...

    STTR Phase I 2012 Department of DefenseArmy
  2. Portable Pollen Analyzer

    SBC: APPLIED NANOTECH, INC.            Topic: A12aT018

    We propose to leverage the expertise of Applied Nanotech, Inc. (ANI) in building highly sensitive, selective, portable and versatile GC/DMS instruments, to create a system to uniquely identify a pollen species based on its VOC profile. This project will determine which VOCs shall be collected and how many pollen grains are needed in order to increase the confidence of accurately identifying a spat ...

    STTR Phase I 2012 Department of DefenseArmy
  3. Development of biological based nanoparticles for improved smoke/obscurant formulations

    SBC: GENEXPRESS INFORMATICS, INC.            Topic: A11aT026

    Studies have shown the potential health and environmental hazards associated with hexachloroethane (HC) and terephthalic (TA) smoke/obscurants. In order to avoid using these materials, new chemical formulations are needed to address toxicological concerns and yet still maintain Grenade Figure of Merit (FOM) requirements. GeneXpress Informatics (GXI), Dr. John Conkling, Adjunct Professor of Chemis ...

    STTR Phase I 2012 Department of DefenseArmy
  4. Random Number Generation for High Performance Computing

    SBC: Silicon Informatics, Inc.            Topic: A10AT012

    Highly scalable parallel random number generators (RNGs) will be developed, evaluated and implemented for use in high performance computing on thousands of multi-core processors and general purpose graphics processing units. The main contributions are: (a) design and implementation of new parallel test methods that capture the inter-stream correlations exhibited in practice and complement the curr ...

    STTR Phase I 2010 Department of DefenseArmy
  5. Activated Reactants to Reduce Fuel Cell Overpotentials

    SBC: JSJ Technologies, LLC            Topic: A10AT011

    The current produced in electrochemical galvanic cells is primarily dependent on the rate of the electrode reactions where the cell's anode is less negative, supplying less energy than thermodynamically predicted, and the cell's cathode is less positive, supplying less energy than thermodynamically predicted. Reduction of electrochemical overpotentials in electrochemical systems has been the prim ...

    STTR Phase I 2010 Department of DefenseArmy
  6. Benign, Inexpensive Simulant for testing of Biological Standoff Sensors

    SBC: Orono Spectral Solutions Inc.            Topic: A10AT017

    The goal of this Phase I proposal is to develop a synthetic, low cost, and benign simulant for biowarfare agents (BWA) to be used in the testing of standoff sensors. Orono Spectral Solutions Inc. (OSS) has performed preliminary work leading to the identification of benign ingredients that, when combined in a predefined mass ratio, mimic UV-Vis and infrared signatures of BG spores. This work was pe ...

    STTR Phase I 2010 Department of DefenseArmy
  7. High surface-area, mesoporous oxide adsorbent sampling system.

    SBC: Orono Spectral Solutions Inc.            Topic: A10AT018

    The overall goal of this Phase I project is to demonstrate the feasibility of an infrared transparent, micro-fluidic sampling system that will lead to a field-deployable detection system capable of detecting low ppb levels of chemical warfare (CW) agents in water. To accomplish this goal, the proposed detection system will combine high surface area, organically modified mesoporous oxide absorptiv ...

    STTR Phase I 2010 Department of DefenseArmy
  8. III-nitride 1.5 Micron Photonic Devices on Si Substrates

    SBC: III-N Technology, Inc            Topic: A10AT015

    Research in silicon photonics has received much attention in recent years for its potential to utilize well developed silicon processing technology. A broad range of linear and nonlinear silicon photonic devices such as modulators, splitters, switches and detectors have been demonstrated. However, the most important challenge in silicon photonics thus far is the difficulty of making electrically p ...

    STTR Phase I 2010 Department of DefenseArmy
  9. Resonant Cavity Enhanced On-Chip Raman Spectrometer Array with Precisely Positioned Metallic Nano-Gaps for Single Molecule Detection

    SBC: OMEGA OPTICS, INC.            Topic: A10AT014

    In this program, Omega Optics and the University of Texas at Austin propose to develop an on-chip surface-enhanced Raman scattering (SERS) spectrometer array for single molecule detection. The sensitivity of the SERS spectrometer comes from the 5-nm gap between gold nanowires, which can achieve 108 enhancement factor (EF) for the Raman scattering signals. Especially, these gold nanowires are preci ...

    STTR Phase I 2010 Department of DefenseArmy
  10. Leader-Following for Mobile Robots

    SBC: Traclabs Inc.            Topic: A10AT030

    TRACLabs Inc. has worked with NASA to create indoor/outdoor, vision-based leader-following systems for sparse, extra-terrestrial environments. Brown University's Robotics Group has demonstrated leader-following and gesture recognition in high-traffic, dynamic, indoor environments using active lidar sensing. We propose to combine our technologies in order to create a passive sensing system that w ...

    STTR Phase I 2010 Department of DefenseArmy
US Flag An Official Website of the United States Government