You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. MEMS based thermopile infrared detector array for chemical and biological sensing

    SBC: BFE Acquisition Sub II, LLC            Topic: A10AT004

    Thermopile arrays manufactured using integrated process compatible materials and micro-machining will provide high performance with low manufacturing cost. Black Forest Engineering (BFE) teamed with Case Western Reserve University will design thermopiles using silicon based semiconductors and compare performance. Low cost thermopiles, differentially coupled with advanced BFE CMOS readout, will pr ...

    STTR Phase I 2010 Department of DefenseArmy
  2. Self-Healing Non-Catalytic Multifunctional Composite Structures

    SBC: CU AEROSPACE L.L.C.            Topic: N10AT007

    Multifunctional materials would alleviate longstanding problems in composite structures associated with multiple types of damage mechanisms such as mechanical/thermal fatigue, microcracking, and impact. CU Aerospace (CUA) proposes an innovative hybrid self-healing composite consisting of a two-part healing agent that is stored in microcapsules and hollow glass fibers (HGF), which are released when ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Graded-Composition Refractory Coatings for Protection of Cu-Rails for Electromagnetic Launchers

    SBC: Engineered Coatings, Inc.            Topic: N10AT025

    The Navy is developing an electromagnetic (EM) launcher for long-range naval surface-fire-support. Severe operating conditions of the EM system place stringent requirements for materials, including high current and magnetic fields, high temperatures, contact with liquid metals, high stress/gouging from balloting contacts and high-speed-sliding electrical-contact with an Al armature. Engineered Coa ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Photovoltaic cells integrated with thermoelectric coolers for critical electronic equipment cooling and thermal management of base camps

    SBC: EPIR TECHNOLOGIES INC            Topic: A10AT024

    Present thermoelectric devices operate at about 10% of the Carnot efficiency, whereas the efficiency of compressor-based refrigerators is larger than 30%. An increase in the thermoelectric figure of merit ZT above 3 is needed before thermoelectric technology can replace current air conditioning technologies in many applications. Recent models have predicted that ZT can reach 6 in metal/HgCdTe supe ...

    STTR Phase I 2010 Department of DefenseArmy
  5. Passive Infrared Detection of Aerosolized Bacterial Spores

    SBC: EPIR TECHNOLOGIES INC            Topic: A10AT019

    The capability to reliably and remotely detect, identify and track biological aerosols is a critical need for the United States military. EPIR Technologies proposes to improve this capability by making use of the infrared signatures from biological aerosol broadband Mie scattering, comprising both mid and long wavelength infrared (MW/LWIR) components, as well as a potential polarization component. ...

    STTR Phase I 2010 Department of DefenseArmy
  6. Powder Reactant Delivery System for Air Independent Fuel Cell

    SBC: Ingenium Technologies Corporation            Topic: N10AT030

    An air independent fuel cell fuel delivery system that is based on the reaction of aluminum and water with a unique additive package that promotes and controls the rate of hydrogen generation and heat released. The fuel delivery system features a unique design that controls the introduction of fuel to the user, yet allows for rapid refueling between missions. The fuel mixture is packaged in an ine ...

    STTR Phase I 2010 Department of DefenseNavy
  7. New and Improved Rail Material for Electromagnetic Launchers

    SBC: AMERICAN ENERGY TECHNOLOGIES COMPANY            Topic: N10AT025

    American Energy Technologies Co. (Glenview, IL) will partner with the Manufacturing Research Center at Georgia Institute of Technology (Atlanta, GA) in order to develop improved rail materials for the Naval electromagnetic railgun application. New rail matrix composites are proposed that will incorporate unique forms of carbon. When compared to existing rail materials (e.g., copper), the anticipat ...

    STTR Phase I 2010 Department of DefenseNavy
  8. Advanced Materials for the Design of Lightweight JP5/JP8/DS2 Fueled Engines for Unmanned Aerial Vehicles (UAVs)

    SBC: Innovative Design & Research Inc.            Topic: N10AT001

    The XS-Air engine should provide the highest power density with both diesel and gasoline piston engines, especially in smaller engines in where turbos or blowers are impractical. The XS-Air engine can solve the aviation industry problem of the potential phasing out Av-gas. The spark ignition XS-Air engine should be able to burn pump gas and still generate extreme power densities, due to its two st ...

    STTR Phase I 2010 Department of DefenseNavy
  9. Narrowband microbolometer arrays for infrared chemical sensing

    SBC: ITN ENERGY SYSTEMS, INC.            Topic: A10AT023

    This Small Business Technology Transfer Research program will develop narrow band plasmonic resonant cavity filters with integrated microbolometer sensors operating in the long wave infrared (LWIR) atmospheric transmission band for IR absorption measurements of low concentration chemicals. IR spectroscopy can identify a wide range of contaminants, including chemical/biological warfare agents, exp ...

    STTR Phase I 2010 Department of DefenseArmy
  10. High Efficiency Gain Media for Eye-Safer 1.55 µm Ultrafast Fiber Amplifiers

    SBC: Kapteyn-Murnane Laboratories, Inc.            Topic: N10AT012

    We propose to design a high average power Er:Fiber ultrafast laser system which is pumped at 14xxnm, and at the same time solve other problems related to ultrashort pulses in fiber lasers. The advantage of using 14xxnm pumping is the reduction of the standard quantum defect from 37% to 5%, thus greatly reducing the thermal load on the system, which makes it inherently more efficient. We also inten ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government