You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

  1. Satellite Swarm Localization and Control via Random Finite Set Statistics

    SBC: ASTER LABS, INC            Topic: T403

    The proposed novel program will develop and demonstrate a new approach to perform real-time relative vehicle localization within a swarm formation with application to communication-less coordination. These objectives are achieved by using Random Finite Sets statistics theory to solve the multiple object tracking problem. The swarm formation localization problem can be formulated as estimating the ...

    STTR Phase I 2016 National Aeronautics and Space Administration
  2. Monolithic Spin-Torque Microwave Diode Spectrograph

    SBC: NVE CORP. (FORMERLY NONVOLATILE ELECTRONICS, INC.            Topic: A16AT016

    This Phase I Small Business Technology Transfer program will simulate and demonstrate the feasibility of a Spin-torque microwave diode spectrograph for real-time determination and monitoring of incident microwave signals. The microwave detection will be performed by a bandwidth encompassing parallel array of nano-patterned magnetic tunnel junctions (MTJs). When an ac current of microwave frequency ...

    STTR Phase I 2016 Department of DefenseArmy
  3. A Compact, Waveguide Based Programmable Optical Comb Generator

    SBC: ADVR, Inc            Topic: T401

    This NASA Phase I STTR effort will establish the feasibility of developing a compact broadband near to mid-IR programmable optical comb for use in laser based remote sensing and communications. The comb generator will use a waveguide-based optical parametric gain block technology that can have ultra wideband (>250nm) operation with very high gain (>25dB) in a very compact footprint. This approach ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  4. Bimetallic Nanoparticle Catalysts for Reforming of Logistics Fuels

    SBC: NanoScale Materials, Inc.            Topic: A09AT018

    High efficiency, low pollution, and long lifetime make hydrogen-powered fuel cells desirable for portable power generation by the Army. However, it is impractical to transport hydrogen to where it is needed. Instead, reforming a transportable liquid fuel such as JP-8 or diesel fuel can produce the hydrogen for the fuel cell. Noble metal catalysts can speed this reforming, but they are expensive a ...

    STTR Phase I 2010 Department of DefenseArmy
  5. Chemical-Biological Forensic Evidence Container with Agent and Tamper Resistant Tools

    SBC: NanoScale Materials, Inc.            Topic: A10AT003

    The proposed research incorporates several inventions to produce structural components that can be assembled into a highly enhanced chemical-biological (CB) forensic evidence container for transport and storage of contaminated articles. Bio-hazardous materials are frequently encountered in standard investigations, and currently used evidence bags are designed to handle the containment and preserv ...

    STTR Phase I 2010 Department of DefenseArmy
  6. High Surface-Area Metal Oxide Sorbent for Sampling and Infrared Detection of Water Contaminants

    SBC: NanoScale Materials, Inc.            Topic: A10AT018

    Detection and identification of toxic chemical in water is vital for various military, environmental, and industrial applications. Specifically, the Joint Services have a need for rapid detection of trace levels of chemical contamination in water systems. This Small Business Technology Transfer Phase I project will focus on the development of a novel detection system for sampling and identificat ...

    STTR Phase I 2010 Department of DefenseArmy
  7. Metal Oxide-Carbon Nanocomposites for Aqueous and Nonaqueous Supercapacitors

    SBC: NanoScale Materials, Inc.            Topic: T601

    This Small Business Innovation Research Phase I effort focuses on development of novel metal-oxide-carbon nanocomposites for application in pseudocapacitive electrochemical supercapacitors. Specifically, nanocomposites based on manganese, titanium, tantalum and vanadium oxides will be incorporated, at the nanoscale level, with electrically conductive carbon supports. Our focus will be to combine ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  8. Random Number Generation for High Performance Computing

    SBC: Silicon Informatics, Inc.            Topic: A10AT012

    Highly scalable parallel random number generators (RNGs) will be developed, evaluated and implemented for use in high performance computing on thousands of multi-core processors and general purpose graphics processing units. The main contributions are: (a) design and implementation of new parallel test methods that capture the inter-stream correlations exhibited in practice and complement the curr ...

    STTR Phase I 2010 Department of DefenseArmy
  9. Wide Bandgap Nanostructured Space Photovoltaics

    SBC: Firefly Technologies            Topic: T3

    Firefly, in collaboration with Rochester Institute of Technology, proposes an STTR program for the development of a wide-bandgap GaP-based space solar cell capable of efficient operation at temperatures above 300oC. Efficiency enhancement will be achieved by the introduction of InGaP quantum wells within the active region of the wide-gap base material. The introduction of these nanoscale features ...

    STTR Phase I 2010 National Aeronautics and Space Administration
  10. Nanowire Photovoltaic Devices

    SBC: Firefly Technologies            Topic: T3

    Firefly, in collaboration with Rochester Institute of Technology, proposes an STTR program for the development of a space solar cell having record efficiency exceeding 40% (AM0) by the introduction of nanowires within the active region of the current limiting sub-cell. The introduction of these nanoscale features will enable realization of an intermediate band solar cell (IBSC), while simultaneous ...

    STTR Phase I 2010 National Aeronautics and Space Administration
US Flag An Official Website of the United States Government