You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. CADET (Cognitive Assessment During Evaluation and Testing)

    SBC: SMART INFORMATION FLOW TECHNOLOGIES LLC            Topic: N16AT002

    We propose CADET (Cognitive Assessment During Evaluation and Testing), a flexible and minimally intru-sive machine learning enabled software sensor that classifies environmental, human behavior, and physiolog-ical features to measure and predict near real time workload (WL) and performance. We will combine SIFT's prior WL research in zero-intrusion techniques in linguistics, keyboard dynamics and ...

    STTR Phase I 2016 Department of DefenseNavy
  2. Microstructure Informatics for Propagating Uncertainty in Material and Processing to Performance Predictions of AM Titanium Parts

    SBC: MRL MATERIALS RESOURCES LLC            Topic: N16AT004

    During AM of metallic alloys, a material exhibits several complex physical phenomena that impact the spatial distribution of heterogeneous material properties within a built component. Subsequent post-processing alters the already heterogeneous location-specific material properties. This project is to develop a novel methodology for linking the time and length scales of the various physical phenom ...

    STTR Phase I 2016 Department of DefenseNavy
  3. Advanced, nanostructred low-friction coatings for foil air bearings

    SBC: MesoCoat            Topic: N16AT005

    During Phase I, we propose to develop nanostructured, low friction thermal sprayed coatings that are able to withstand high dynamic loadings. Additionally, the novel coatings will possess a low friction coefficients in humid air, dried conditions and various greases and lubricants. These novel nanostructured coatings will be manufactured by HVOF spraying of solid lubricants based nanostructured po ...

    STTR Phase I 2016 Department of DefenseNavy
  4. Medium Voltage Direct Current (MVDC) Fault Detection, Localization, and Isolation

    SBC: IAP RESEARCH, INC.            Topic: N16AT009

    In this phase I we propose to extend our work on MVDC isolation device to include fault detection, and fault localization circuitry. We have previously developed under an SBIR a 6 kVDC, 2000A isolation device that was built and tested in MVDC ship distribution system laboratory at FSU CAPS. In this phase I we propose to use rogowski coils and hall effect probes to detect faults and we propose to a ...

    STTR Phase I 2016 Department of DefenseNavy
  5. Low-cost Thermal Management Technology for Combat Systems Computers

    SBC: Engineering And Scientific Innovations Inc.            Topic: N16AT014

    Using a fluid dynamic energy separation technique, in combination with thermoelectric generators (TEGs), a unique hybrid cooling system using low grade waste heat is proposed. This system uses the concept of fluid structure interactions and vorticity redistribution to produce large levels of vorticity within working fluid and thereby generate large temperature gradients in the working fluid which ...

    STTR Phase I 2016 Department of DefenseNavy
  6. Integrated Computational Material Engineering Approach to Additive Manufacturing for Stainless Steel (316L)

    SBC: SCIENTIFIC FORMING TECHNOLOGIES CORPORATION            Topic: N16AT022

    We are proposing to identify an ICME architecture that will enable the multi-scale modeling of additive manufacturing (AM) process at both the component level as well as at the meso-scale level such that the final part quality and performance can be predicted accurately. At the component level, the proposed ICME framework would help in predicting residual stresses, distortion and the necessary sup ...

    STTR Phase I 2016 Department of DefenseNavy
  7. A New MOCVD Platform for Commercially Scalable Growth of-Ga2O3 Device Structures

    SBC: AGNITRON TECHNOLOGY, INC.            Topic: N16AT023

    Future DoD and Navy missions require advances in current high voltage power electronics technology as existing technology and even recent promising advances in Silicon Carbide and Gallium Nitride based materials lack fundamental material properties to deliver switching capabilities needed for future high power converter applications, advanced radar and propulsion systems. Much interest has been re ...

    STTR Phase I 2016 Department of DefenseNavy
  8. Compact Laser Drivers for Photoconductive Semiconductor Switches

    SBC: ASR Corporation            Topic: DTRA16A004

    A compact laser driver will allow photoconductive semiconductor switches to be used in small EMP simulator "building blocks" (EMPBB). Combined with a battery powered on-board pulsed power system, these EMPBBs will allow the construction of flexible EMP test facilities with nothing more than a single fiber optic timing connection to each EMPBB.

    STTR Phase I 2016 Department of DefenseDefense Threat Reduction Agency
  9. Detecting Substandard, Nonconforming, Improperly Processed and Counterfeit Materiel

    SBC: VIBRANT CORP            Topic: DLA15C001

    Vibrant Corporation and Sandia National Laboratories (SNL) propose to apply Process Compensated Resonance Testing (PCRT) to the DLA's need for an NDI method to detect counterfeit, nonconforming and improperly processed materiel. PCRT collects and analyzes the resonance frequencies of a component to detect structural defects, characterize material, analyze population variation, monitor manufacturin ...

    STTR Phase I 2016 Department of DefenseDefense Logistics Agency
  10. Metamorphic Buffer Layer Growth for Bulk InAs(x)Sb(1-x) LWIR Detectors

    SBC: BerrieHill Research Corporation            Topic: A16AT009

    This proposal describes a comprehensive effort to develop the required epitaxial materials technologies to support the development and commercialization of next generation, epitaxially grown, engineered III-V LWIR detectors that achieve performance equivalent to much higher cost II-VI detectors. Our team proposes a unique and innovative approach which utilizes MOCVD growth of metamorphic buffer la ...

    STTR Phase I 2016 Department of DefenseArmy
US Flag An Official Website of the United States Government