You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Weld Penetration Monitoring and Feedback Control in Submerged Arc Welding

    SBC: ADAPTIVE INTELLIGENT SYSTEMS            Topic: N093210

    This SBIR project aims at the development of an innovative technology that can be attached to existing submerged arc welding (SAW) systems to monitor and feedback control the depth of weld penetration. Existing SAW systems will be operated using existing welding procedures without modifications. In many applications skilled welders may adjust the welding parameters based on their observation of dy ...

    SBIR Phase I 2010 Department of DefenseNavy
  2. Meshfree-Based Fracture Evaluation and Design Tool for Welded Aluminum Ship Structures

    SBC: Advanced Dynamics, Inc.            Topic: N10AT041

    The aluminum alloys have low density, relatively high strength, and high strength-to-weight ratio, which brings some major advantages in marine structure design, fabrication, and operations. However, marine ships are subjected to a complex and severe loading, and the typical failure mode of aluminum under extreme dynamics loading such as wave slamming and high velocity impact is ductile fracture. ...

    STTR Phase I 2010 Department of DefenseNavy
  3. Deterministic and Statistical Characterization of the Impact of Control Surface Freeplay on Flutter and Limit-Cycle Oscillation (LCO) using Efficient

    SBC: Advanced Dynamics, Inc.            Topic: N10AT003

    Research is proposed for the development and implementation of state of the art computational and experimental tools for the investigation of the impact of control surface freeplay on the flutter and limit cycle oscillation characteristics of two-dimensional and three-dimensional wings in subsonic and transonic flow. Highly efficient and accurate aeroelastic simulation tools will be constructed ba ...

    STTR Phase I 2010 Department of DefenseNavy
  4. Multiscale Modeling and Analysis of Foreign Object Damage in Ceramic Matrix Composites with the Material Point Method

    SBC: Advanced Dynamics, Inc.            Topic: N10AT010

    This Small Business Technology Transfer Phase I project is aiming at developing and implementing a multiscale composite model to predict the ceramic matrix composite (CMC) response to the impact loading by foreign objects. In particular, the physics-based model will be applied to describe the multiscale foreign object damage (FOD) phenomena of CMCs due to the complex nature of impact dynamics coup ...

    STTR Phase I 2010 Department of DefenseNavy
  5. STOCHASTIC MUTISCALE/MULTISTAGE MODELING OF ENGINE DISKS

    SBC: Advanced Dynamics, Inc.            Topic: N10AT028

    Turbine disks are amongst the most critical components in aero- and naval-vessel engines. They operate in a high pressure and temperature environment requiring demanding properties. Nickel-based supperalloys which have high creep and oxidation resistance at high temperatures are widely used as the material of turbine disks. The elevated-temperature strength of this supperalloy and its resistance t ...

    STTR Phase I 2010 Department of DefenseNavy
  6. A Superior Energy Storage Device Using Lithium Anode and Thermally Stable Cathode

    SBC: Technology Holding, LLC            Topic: N101070

    This SBIR Phase I proposal from Technology Holding LLC seeks to develop an advanced energy storage system to integrate with renewable energy systems. The high energy density can be achieved by using lithium anode and thermally stable cathode materials. Solid electrolytes are expected to be far less reactive with any cathode material compared to liquid, organic electrolytes. Research in Phase I wil ...

    SBIR Phase I 2010 Department of DefenseNavy
  7. Thermal-Shock-Resistant Sensor Windows and Domes for High-Speed Flight Made of Low-Expansion Ceramics

    SBC: Materials and Systems Research, Inc.            Topic: N08T003

    This Small Business Technology Transfer Research (STTR) Phase II proposal from Materials and Systems Research, Inc. (MSRI) and University of Utah (research institution) seeks to fabricate single-phase, polycrystalline tungstate ceramics with densities greater than 99.95% and a mean grain size of less than 1 um. These ceramics have been chosen because of their low thermal expansion and low elastic ...

    STTR Phase II 2010 Department of DefenseNavy
  8. Innovative Fabrication of High Temperature CO2 Selective Membrane for Hydrogen Generation via Membrane-Enhanced Water-Gas Shift Reaction

    SBC: Materials and Systems Research, Inc.            Topic: 10a

    Efficient production of hydrogen from abundant fossil fuel reserves along with effective CO2 sequestration processes can lead to reduction of greenhouse gas emissions and elimination of dependence on foreign oil. Currently, hydrogen production via water-gas shift (WGS) reaction of either a coal-derived syngas or natural gas steam reformate, coupled with pressure-swing adsorption is the most econom ...

    SBIR Phase I 2010 Department of Energy
  9. Scalable, Energy Harvesting, Wireless Sensor Network for Structural Health Monitoring of Ships

    SBC: MicroStrain, Inc.            Topic: N101095

    Structural health monitoring (SHM) of large structures such as Navy ships requires an in depth knowledge of operational loads and how these loads may change over time. A network of low cost, wireless strain sensors can provide this information. During Phase I, we will demonstrate a highly synchronized, scalable network of energy harvesting wireless strain sensors. By converting ambient cyclic stra ...

    SBIR Phase I 2010 Department of DefenseNavy
  10. A Multiscale Modeling and Simulation Framework for Predicting After-Burning Effects from Non-Ideal Explosives

    SBC: REACTION ENGINEERING INTERNATIONAL            Topic: N10AT002

    The primary objective of the proposed effort is to develop a validated computational tool to predict the afterburning of non-ideal munitions containing metal and hydrocarbon fuels. The activities outlined devise a well-coordinated collaboration among researchers from Reaction Engineering International (REI) and the State University of New York at Buffalo (UB). The activities proposed will build on ...

    STTR Phase I 2010 Department of DefenseNavy
US Flag An Official Website of the United States Government