You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Novel Methods to Measure Penetrator Dynamics in Multi-Layer Geometries

    SBC: Thornton Tomasetti, Inc.            Topic: DTRA07011

    In Phase I of this effort we analyzed the structural response of a BLU 109 during typical penetration events. Based on these finite element results, we proposed and demsonstrated a simple robust concept for a passive penetrator sensor that identifies the material being penetrated and also correlates strongly with its underground trajectory. Such a sensor would obviously provide valuable informatio ...

    SBIR Phase II 2008 Department of DefenseDefense Threat Reduction Agency
  2. The Characterization and Mitigation of Single Event Effects in Ultra-Deep Submicron (< 90nm) Microelectronics

    SBC: Orora Design Technologies, Inc.            Topic: DTRA07005

    Orora Design Technologies proposes to develop electronic design automation (EDA) tools employing minimally invasive circuit design-based methods to mitigate single event effects (SEEs) for next generation Ultra-DSM CMOS (

    SBIR Phase II 2008 Department of DefenseDefense Threat Reduction Agency
  3. Portable Time of Flight Mass Spectrometer for Nuclear Forensics

    SBC: CREARE LLC            Topic: DTRA08004

    Analysis of nuclear material samples in the field has many advantages over laboratory analysis. Laboratory analyses can be slow, involve increased expense, lead to additional waste generation and disposal problems, and may introduce errors due to sample degradation or mishandling. In situ analysis mitigates all of these problems. The specific aim of this project is the development of a truly por ...

    SBIR Phase I 2008 Department of DefenseDefense Threat Reduction Agency
  4. Agent Defeat using a DWA Accelerator

    SBC: BROOKHAVEN TECHNOLOGY GROUP INC            Topic: DTRA08008

    A new type of compact induction accelerator currently under development at the Lawrence Livermore National Laboratory (LLNL) promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators and advanced dielectric materials and switches. The system, called the Diel ...

    SBIR Phase I 2008 Department of DefenseDefense Threat Reduction Agency
  5. Engineering Models for Damage to Structural Components Subjected to Internal Blast Loading

    SBC: Thornton Tomasetti, Inc.            Topic: DTRA08006

    Predicting the response of building components to internal detonations is more complex than the corresponding task for external loads because of the more complex loading waveforms which include multiple reflections in the shock phase followed by a long duration pseudostatic loading that depends upon room venting. Add the possibility of additional impulsive loading from primary debris. We propose t ...

    SBIR Phase I 2008 Department of DefenseDefense Threat Reduction Agency
  6. Lightweight, Rugged, Portable Fuel Cell

    SBC: CREARE LLC            Topic: N/A

    "To operate sensors to verify future arms control agreements, inspectors will need a portable power source. The power source must be rugged, lightweight, reliable, adaptable to a variety of different sensor applications with different current/voltagerequirements, and simple to refuel in the field. We propose to develop a polymer electrolyte membrane (PEM) fuel cell that is ideal for arms control ...

    SBIR Phase I 2002 Department of DefenseDefense Threat Reduction Agency
  7. 220 Watt, Man-Portable, Chemical Hydride Based Fuel Cell System for Arms Control Applications

    SBC: TRULITE TECHNOLOGY            Topic: N/A

    "Now that reliable, robust, commercial proton exchange membrane fuel cells (PEMFCs) are available, the problem has shifted to fuel storage. PEMFCs function most efficiently (>50%) when supplied with pure hydrogen. Unfortunately, storing large quantitiesof hydrogen in a compact, lightweight form has proven to be very difficult. Most of the hydrogen storage methods that have been developed for fu ...

    SBIR Phase I 2002 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government