You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY24 is not expected to be complete until March, 2025.

Download all SBIR.gov award data either with award abstracts (290MB) or without award abstracts (65MB). A data dictionary and additional information is located on the Data Resource Page. Files are refreshed monthly.

The SBIR.gov award data files now contain the required fields to calculate award timeliness for individual awards or for an agency or branch. Additional information on calculating award timeliness is available on the Data Resource Page.

  1. Prediction of Emergent SCIENce and Technology (PRESCIENT)

    SBC: Systems & Technology Research LLC            Topic: DTRA162005

    We propose to develop Prediction of Emergent SCIENce & Technology (PRESCIENT), a system that mines a text corpus of scientific patents and publications to discover emerging technologies that may impact WMD or CWMD. PRESCIENT will take as input patents and

    SBIR Phase II 2018 Department of DefenseDefense Threat Reduction Agency
  2. Low Voltage Radiation Hardened Optoelectronics for Optical Interconnects

    SBC: Quanttera LLC            Topic: DTRA152001

    The Defense Threat Reduction Agency (DTRA) recognizes the need for low-power high-bandwidth radiation-hard optical interconnects to process more data more quickly and to replace electronic data.Our companys core development in optical communications with semiconductor materials is a unique fit for DTRAs low-power consumption high-bandwidth radiation-hard intra-chip communication components for sat ...

    SBIR Phase II 2018 Department of DefenseDefense Threat Reduction Agency
  3. Memory Instrumentation and Performance Simulation (MIPS)

    SBC: ATC-NY INC            Topic: DTRA172003

    Next-generation high-performance computing (HPC) hardware, such as the Intel Xeon Phi Knights Landing Many-Integrated-Core processor, provide new deep memory architectures that offer the promise of increased performance. The challenge in taking full advantage of this architecture is selecting which data structures will be placed in the high-bandwidth memory. Optimizing data structure placement in ...

    SBIR Phase I 2018 Department of DefenseDefense Threat Reduction Agency
  4. A Robust, Machine Independent, Software Toolkit for Topology Aware Process Mapping on Distributed Memory HPC Architectures

    SBC: CONTINUUM DYNAMICS INC            Topic: DTRA172002

    A significant performance gap exists between the theoretical number of Floating Point Operations (FLOPS) that a HPC machine is capable of sustaining and the number of FLOPS realized by real-world HPC applications. One of the principle reasons for this gap is the parasitic work that computational processes must do to communicate with one another. It has been shown that this communication work can b ...

    SBIR Phase I 2018 Department of DefenseDefense Threat Reduction Agency
  5. Integrated Multi-mode Handheld RIID

    SBC: RADIATION MONITORING DEVICES, INC.            Topic: DTRA152007

    The goal of the project is to develop a handheld instrument that detects, identifies, and categorizes radioactive sources based on gamma, thermal-, and fast-neutron signatures. Existing radioisotope identification devices (RIIDs) are typically biased toward gamma spectroscopy; some instruments may use an additional inefficient neutron counter in form of a He-3 tube. The recent development of mat ...

    SBIR Phase II 2018 Department of DefenseDefense Threat Reduction Agency
  6. Novel Methods to Measure Penetrator Dynamics in Multi-Layer Geometries

    SBC: Thornton Tomasetti, Inc.            Topic: DTRA07011

    In Phase I of this effort we analyzed the structural response of a BLU 109 during typical penetration events. Based on these finite element results, we proposed and demsonstrated a simple robust concept for a passive penetrator sensor that identifies the material being penetrated and also correlates strongly with its underground trajectory. Such a sensor would obviously provide valuable informatio ...

    SBIR Phase II 2008 Department of DefenseDefense Threat Reduction Agency
  7. Improvements in Scintillation Technology for Detection of Nuclear Radiation

    SBC: RADIATION MONITORING DEVICES, INC.            Topic: DTRA07004

    High-resolution scintillation crystals and crystal arrays are important components of current and future handheld and arrayed detectors (used for DOD/DTRA applications), and scintillation spectrometers (routinely used in high energy physics research, medical imaging, diffraction, homeland security, nuclear waste clean-up, nuclear treaty verification and safeguards, and geological exploration). Un ...

    SBIR Phase II 2008 Department of DefenseDefense Threat Reduction Agency
  8. The Characterization and Mitigation of Single Event Effects in Ultra-Deep Submicron (< 90nm) Microelectronics

    SBC: Orora Design Technologies, Inc.            Topic: DTRA07005

    Orora Design Technologies proposes to develop electronic design automation (EDA) tools employing minimally invasive circuit design-based methods to mitigate single event effects (SEEs) for next generation Ultra-DSM CMOS (

    SBIR Phase II 2008 Department of DefenseDefense Threat Reduction Agency
  9. Advanced nanocomposite scintillator for gamma radiation detection

    SBC: AGILTRON, INC.            Topic: DTRA08005

    Until now gamma radiation detection has required large single crystals of sensitive materials that are difficult to produce consistently on an industrial scale. In collaboration with a research group at the University of Texas at Arlington, Agiltron proposes to develop a new class of nanocomposite scintillator materials. The radiation detection characteristics of the synthetic nanoparticles in the ...

    SBIR Phase I 2008 Department of DefenseDefense Threat Reduction Agency
  10. Agent Defeat using a DWA Accelerator

    SBC: BROOKHAVEN TECHNOLOGY GROUP INC            Topic: DTRA08008

    A new type of compact induction accelerator currently under development at the Lawrence Livermore National Laboratory (LLNL) promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators and advanced dielectric materials and switches. The system, called the Diel ...

    SBIR Phase I 2008 Department of DefenseDefense Threat Reduction Agency
US Flag An Official Website of the United States Government