List

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for the given year is not complete until April of the following year. Annual Reports data is a snapshot of agency reported information for that year and hence might look different from the live data in the Awards Information charts.

  1. STTR Phase I: Wearable Fabric Sensor for Hydration Monitoring

    SBC: Roosense LLC            Topic: BM

    This SBIR Phase I project will provide prototype products to satisfy customer needs in prioritized wearable sensor market segments for the endurance sports market. One advantage of the proposed sensor is its similar feel to cloth fabric, a benefit in comfort and convenience to the user. This is in contrast to current hydration monitors made of thick plastic materials requiring the use of an additi ...

    STTR Phase I 2019 National Science Foundation
  2. STTR Phase I: Organic Additives to Improve Performance in Zinc-Air Batteries

    SBC: OCTET SCIENTIFIC, LLC            Topic: CT

    This STTR Phase I project will remove the most critical roadblock to making long-lasting batteries from safe and economical zinc and air. Zinc is plentiful in the U.S. and zinc-air batteries have the potential to hold more than five times the energy of current lithium-ion batteries, but a key challenge for making rechargeable zinc-air batteries is that the zinc inside the battery naturally forms s ...

    STTR Phase I 2018 National Science Foundation
  3. Oxygen Production and Delivery on Demand

    SBC: Global Research and Development Inc.            Topic: DHA17B005

    This proposal is in response to the Defense Health Agency 2017 Phase I SBIR topic 17B-005.The approach is the use of a membrane oxygen pump using newly developed nano-thickness membranes with all the layers less than 1 micron total.Nanometer thickness membranes enable more oxygen output per surface area at temperatures of 300-600 C than current state-of-the -art 600-800 C membranes that are 50-300 ...

    STTR Phase I 2018 Department of DefenseDefense Health Program
  4. Test Article Printing with Laser Additive Manufacturing (TAP-LAM) for Threat Surrogate Target Production

    SBC: MV Innovative Technologies LLC (DBA: Opt            Topic: MDA17T001

    Optonicus proposes development of the TAP-LAM (Test Article Printing with Laser Additive Manufacturing for Threat Surrogate Target Production) powder bed fusion and directed energy depositions systems. The TAP-LAM metal additive manufacturing system will advance strategic missile defense system testing capabilities by improving 3D printing methods to rapidly produce large-scale threat surrogate ta ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  5. Additive Manufacturing of Metallic Materials for High Strain Rate Applications

    SBC: MRL MATERIALS RESOURCES LLC            Topic: MDA17T001

    Metallic additive manufacturing (AM) is an attractive technology for the production of lethality test articles due to the potential for significantly reduced lead time and manufacturing cost.However, in order to be effective in providing accurate lethality data, the properties of the AM material have to match closely the properties of conventionally manufactured alloys found in real threat targets ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  6. Control Electronics for Space-Qualified Cryogenic Coolers

    SBC: CREARE LLC            Topic: MDA17T003

    Future MDA space missions will utilize small spacecraft with correspondingly small, advanced sensor systems.Cooling of these sensors is required to decrease detector noise and increase detector sensitivity by maintaining the detector at a reduced operating temperature.The cooling system comprises a mechanical cryocooler and its control electronics, both of which are critical technologies to enable ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  7. Lightweight Magnesium Components of a Missile Body

    SBC: Terves Inc.            Topic: MDA17T004

    Magnesium alloys have 35% lower density compared to aluminum, with improved temperature stability compared to high strength aluminum.They can also be fabricated with minimum gauge thicknesses considerably thinner than fiber composites, and are weldable, with much higher impact resistance.Traditional magnesium alloys, however, have had lower strengths than more developed aluminum alloys.Powder meta ...

    STTR Phase I 2018 Department of DefenseMissile Defense Agency
  8. Cooling System for Laser Enclosure

    SBC: Mentis Sciences, Inc.            Topic: N18AT001

    The Navy is in need of a lightweight, reliable and efficient cooling system for a laser enclosure, with a specific focus on removing heat from a laser head. These types of systems are commonly employed on fixed wing and rotorcraft platforms. The first expected use of this technology will be on the H-60 platform as part of a lightweight electronics enclosure. Mentis Sciences, Inc. and the Universit ...

    STTR Phase I 2018 Department of DefenseNavy
  9. Compact Thermal Management System for Laser Systems

    SBC: Spectral Energies, LLC            Topic: N18AT001

    The use of laser technologies and high-power electronics is rapidly being incorporated into tactical platforms for imaging, target designation, and range finding. Electronic equipment including lasers demand power from a tactical aircraft and produce large amounts of thermal energy as a waste product. Current thermal management technologies will not be sufficient for future aircraft as thermal man ...

    STTR Phase I 2018 Department of DefenseNavy
  10. Laser Additive Manufacturing of Seven Thousand Series Aluminum Aircraft Components (LAM-STAAC)

    SBC: MV Innovative Technologies LLC (DBA: Opt            Topic: N18AT005

    Alloys of aluminum in the 7000 series are known to have good weight, strength, and fatigue properties and are commonly used in Naval aircraft components. Recent manufacturing trends are increasingly focused on additive manufacturing (AM) methods as a way to reduce lead time, cost, and to improve part performance. Current additive manufacturing techniques are unable to fabricate parts in 7000 serie ...

    STTR Phase I 2018 Department of DefenseNavy

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government