You are here

Award Data

For best search results, use the search terms first and then apply the filters
Reset

The Award database is continually updated throughout the year. As a result, data for FY20 is not expected to be complete until September, 2021.

  1. Nonequilibrium Plasma-Assisted Combustion-Efficiency Control in Vitiated Air

    SBC: COMBUSTION SCIENCE & ENGINEERING, INC.            Topic: AF13AT04

    ABSTRACT: The ability of plasmas to modify combustion has been known for more than 50 years. Recent advances in plasma generation technology and measurement diagnostics have led to extensive efforts to understand both the kinetics of the plasma-flame interaction and the enhancement of combustion properties such as ignition, extinction, flame speed and dynamics. Combustion Science & Engineering, ...

    STTR Phase I 2014 Department of DefenseAir Force
  2. Wideband RF Photonic Link with Real-Time Digital Post Processing

    SBC: Pharad, LLC            Topic: N14AT023

    Pharad is teaming with the Applied Physics Laboratory of The Johns Hopkins University to propose and investigate the feasibility of wideband (VHF to SHF) RF-to-digital photonic link architectures with real-time digital signal processing (DSP) that can meet the stringent performance metrics of military systems. The key requirements for our wideband DSP linearized RF-to-digital photonic link include ...

    STTR Phase I 2014 Department of DefenseNavy
  3. Physical Sub-Model Development for Turbulence Combustion Closure

    SBC: COMBUSTION SCIENCE & ENGINEERING, INC.            Topic: AF13AT12

    ABSTRACT: Ramjets and scramjets are the preferred propulsion platforms for flight in the supersonic (3

    STTR Phase I 2014 Department of DefenseAir Force
  4. Coupled Multi-physics Analysis and Design Optimization of nozzles (COMANDO)

    SBC: INTELLIGENT AUTOMATION, INC.            Topic: N14AT005

    The US Navy faces daunting energy challenges that will further increase in severity, given the ever-increasing global demand for energy, diminishing energy supplies and demand for enhanced environmental stewardship. Navys environment foot print consists of both emissions and noise generated every day around the world. Additionally, noise is an important issue for the Navy due to the adverse effect ...

    STTR Phase I 2014 Department of DefenseNavy
  5. Light Weight Optics For High Power Directed Energy Applications

    SBC: BRIMROSE TECHNOLOGY CORPORATION            Topic: MDA13T009

    The objective of this proposal is to demonstrate the feasibility of producing light weight and thermally manageable integrated optical systems suitable for airborne and space high power directed energy applications. This project will focus on improving two of the most important parts of a high energy mirror design, the reflective mirror surface, and the multifunctional substrate. Brimrose, in coll ...

    STTR Phase I 2014 Department of DefenseMissile Defense Agency
  6. Narrow Band Gap Quantum Dots and Quantum Wires For Mid-Wave Infrared Focal Plane Array Detectors

    SBC: BRIMROSE TECHNOLOGY CORPORATION            Topic: ST13B002

    There is an acute need for low-power, low-cost, portable mid-wave infrared (MWIR) thermal imaging systems. Current HgCdTe focal plane array (FPA) detectors have high fabrication cost and require low operating temperature. Recent advances in quantum dot (Q

    STTR Phase I 2014 Department of DefenseDefense Advanced Research Projects Agency
  7. Ultra-Coherent Semiconductor Laser Technology

    SBC: Morton Photonics Incorporated            Topic: A14AT005

    In this STTR program, technology created at the University of California at Santa Barbara (UCSB) to fabricate silicon photonics based integrated laser devices, including wafer bonded gain elements, will be utilized to develop ultra-coherent integrated laser devices that are widely tunable. Novel laser designs developed by Morton Photonics, taking advantage of ultra-low loss microresonator based f ...

    STTR Phase I 2014 Department of DefenseArmy
  8. Two-Dimensional MoS2 Transistors for Low-Power RF Applications

    SBC: N5 Sensors, Inc.            Topic: A14AT008

    The proposed project will demonstrate high-frequency (0.5 5 GHz) operation of novel 2-dimensional semiconductor molybdinum disulphide (MoS2) based field-effect transistors. Our project will focus on innovative growth startegies for large-area growth of MoS2 along with novel device design methodologies which will consider the tradeoffs between monolayer and multilayer device designs for high-frequ ...

    STTR Phase I 2014 Department of DefenseArmy
  9. Circadian Rhythm Monitoring and Regulation Device (CMR)

    SBC: INTELLIGENT AUTOMATION, INC.            Topic: A14AT009

    The Department of Defense is concerned with circadian rhythm misalignments as they are known to affect judgment, psychomotor skills, and can lead to Post-Traumatic Stress Disorder (PTSD). At present, there is no comprehensive unobtrusive and easy-to-use solution that measures the circadian misalignment and automatically administers the appropriate therapy for realignment of circadian rhythm. Intel ...

    STTR Phase I 2014 Department of DefenseArmy
  10. Freeze Casting of Tubular Sulfur Tolerant Materials for Solid Oxide Fuel Cells

    SBC: TECHNOLOGY ASSESSMENT AND TRANSFER, INC.            Topic: A14AT011

    This STTR project seeks to overcome the performance limitations of experimental sulfur tolerant SOFC materials by combining two elements of efficient SOFC design: 1) micro-tubular arrays (OD

    STTR Phase I 2014 Department of DefenseArmy
US Flag An Official Website of the United States Government